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A B S T R A C T

This paper proposes a new trajectory tracking output feedback control design for quadrotor unmanned aerial
vehicles (UAVs) to manage stable flight in the outdoor environment with strong uncertainties, i.e., wind gusts.
The controller is designed to handle unmeasured system states, disturbances, and uncertainties. Extended High-
Gain Observers (EHGO) are employed to estimate the unmeasured system states and disturbances. A newly
designed controller, namely Recursive Least Square with Dynamic Inversion (RLS-DI) controller, determines
the coefficient of the input Jacobian to deal with the system uncertainties present in the input Jacobian.
To deal with the underactuation characteristic inherited in the quadrotor, the controller and plant dynamics
are separated into multi-time-scale structures. The stability of the closed-loop system is analyzed using the
singular perturbation method. Through numerical simulations and outdoor experiments under the wind gust,
the effectiveness of the proposed control algorithm is verified.
. Introduction

Quadrotor control is challenging because the dynamics have intrin-
ic unstable features [1]. Furthermore, quadrotors are influenced by
xternal disturbances, which result in additional uncertainties for the
ontrol design. Since quadrotors are used in a wide range of applica-
ions, it is essential to create a robust control system under external
ncertainties in order to ensure the stable flight of the quadrotor.
n this paper, we present the output feedback controller that tracks
rajectories (𝑥, 𝑦, 𝑧, and yaw) under uncertainties utilizing the recursive
east square combined with the dynamic inversion method on top of the
ulti-time-scale structure.

Backstepping and sliding mode control (SMC) methods are ex-
ensively used to add robustness to nonlinear control designs of the
uadrotor under uncertainties. In [2], SMCs were designed to cancel the
ncertainties in a quadrotor system and to address the underactuation
y dividing states into indirect and direct states. In [3], a continuous
liding-mode control (CSMC) method was introduced to achieve strong
obustness to various disturbances on the quadrotor. Based on the
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disturbance observer, the CSMC approach is used to deal with both
matched and mismatched uncertainty in [4]. An adaptive backstepping
scheme was used to manage constant parameter uncertainties which
may be present in the quadrotor dynamics [5]. In [6], the finite-
time backstepping approach is introduced to improve convergence
properties near the trim point. [7] proposed a control method that cir-
cumvents both underactuation issues and cascade constraints caused by
the cascade structure. This method recursively stabilizes tracking errors
by incorporating the SMC and dynamic surface control approaches into
a backstepping-like framework. In [8], the authors present an accu-
rate trajectory tracking controller that utilizes the sliding-mode error
surfaces in rotation dynamics. This method allows two heterogeneous
systems under the complex unknowns to develop independently in the
translation–rotation cascade manners.

To overcome the external disturbances and unmeasured states, var-
ious types of controllers and observers are utilized. In [9], the integral
of the signum of the error-based controller is utilized for the inner-loop
subsystem, and the immersion and invariance method is utilized for the
vailable online 10 April 2023
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outer-loop subsystem. In [10], a nonlinear 𝐻∞ control scheme was used
to stabilize the rotational dynamics while a model predictive control
(MPC) scheme was utilized to track trajectories in the translational
dynamics under state feedback. In [11], a dynamic inversion and 𝐿1
adaptive control were combined to deal with unmeasured states, uncer-
tainties, and input delay. [12] proposed a disturbance observer with the
backstepping approach to achieve the disturbance attenuation control
of the quadrotor UAV. The high-gain observer-based approach with
FL control is employed to compensate for actuator and sensor faults
in [13]. Robust controllers for an uncertain payload were designed
using SMC and backstepping control in [14,15], respectively.

Neural networks (NNs) based UAVs controllers are extensively stud-
ied. In [16], NNs are used for the controller and observers to learn
quadrotor dynamics in an online manner, including uncertain nonlinear
terms such as aerodynamic friction. To estimate the disturbances, [17]
uses NNs with a feedback-linearization (FL) method for precise landing
and takeoff by approximating disturbances and incorporating them into
an exponentially stabilizing controller. In [18], a geometric adaptive
controller was augmented with NNs to mitigate unknown disturbances.
[19] proposed an adaptive neural network-based trajectory tracking
controller that is robust against parametric uncertainties of the inner
loop. Without knowing the parameters of the quadrotor and the in-
accessible inner loop controller, the controller was able to accurately
track the trajectories.

One of the drawbacks of the aforementioned approaches is that they
assume approximated dynamics, i.e., approximated inputs Jacobians.
Moreover, these schemes assume a fixed input Jacobian matrix, which
is inevitably vulnerable to uncertainties in the input Jacobian matrix.
These uncertainties may raise a stability issue when the controller is
implemented in the quadrotor hardware and tested in the environ-
ment under highly uncertain disturbances. To address this problem,
we propose a new control strategy that is robust against plant model
uncertainties and external disturbances. We employ a multi-time-scale
structure to overcome the underactuation present in quadrotors and
achieve it by stratifying high feedback gains of the quadrotor’s con-
trollers and dynamics. This multi-time-scale structure is explained in
detail in Section 3. On top of this, the dynamic inversion (DI) [20–22]
is utilized to directly deal with the inputs Jacobian. In contrast to the DI
method proposed in [21,22], we combine the Recursive Least Square
(RLS) method with the DI method to allow further robustness to the
uncertainties in the input Jacobian. The RLS recursively computes the
error between the reference trajectories and current states and reflects
this error into the input Jacobians, which governs the control input’s
update rule of the DI. In addition, the extended high-gain observer
(EHGO) is employed to estimate the model uncertainties, unmeasured
system states, and external disturbances. The main contributions are as
follows:

1. We design a novel output feedback controller using DI, based
on the RLS method (RLS-DI), to deal with uncertain input coef-
ficients. The EHGO is combined with the newly designed RLS-DI
(EHGO-RLS-DI) to estimate the controller’s unmeasured system
states and uncertainties.

2. The stability of the controller is analyzed using the singular
perturbation method [23], which guarantees the stability on the
closed-loop system.

3. To show the outperformance of our proposed scheme, both
the perturbed input Jacobian of the FL method combined with
the EHGO [24] (EHGO-FL) and the disturbance observer-based
CSMC (DOB-CSMC) control strategy are considered in a bench-
mark study. Under the same perturbation, the EHGO-RLS-DI
outperforms the EHGO-FL and the DOB-CSMC.

4. The proposed controller is discretized to perform the outdoor
hardware experiments in the presence of wind gusts. The results
2

shows that the EHGO-RLS-DI outperformed the EHGO-FL.
This paper is organized as follows. In Section 2, the dynamics and
assumptions for the quadrotor are introduced. The output feedback
control in the presence of uncertainties is presented in Section 3.
The closed-loop system stability analysis for the proposed controller
is shown in Section 4. Section 5 presents the numerical simulation
result of the proposed controller and compares it with benchmark
controllers. In Section 6, hardware implementation of the proposed
control demonstrates that the proposed control design is effective for
outdoor flight. Concluding remarks and future works are given in
Section 7.

2. Quadrotor dynamic model

Using the body coordinate frame given by the Newton–Euler equa-
tion, the equations of motion for quadrotors in [25] are
[

𝑀 03×3
03×3 𝐼

] [

�̇�𝑏

�̇�𝑏

]

+
[

𝜔𝑏 × 𝑚𝑣𝑏

𝜔𝑏 × 𝐼𝜔𝑏

]

=
[

𝑓 𝑏

𝜏𝑏

]

, (1)

where 𝑀 = diag(𝑚, 𝑚, 𝑚) ∈ R3×3 is a mass matrix with 𝑚 > 0. The
inertia matrix is 𝐼 = diag[𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧] ∈ R3×3, and 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 are
principle moments of inertia along the body-fixed 𝑥-, 𝑦-, and 𝑧-axes,
respectively. The velocity vector is 𝑣𝑏 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]𝑇 ∈ R3 where
the subscripts indicate each inertial axes. The angular velocity vector is
𝜔𝑏 = [𝜔1, 𝜔2, 𝜔3]𝑇 ∈ R3 where 𝜔1, 𝜔2, and 𝜔3 are the angular velocities
along the body-fixed 𝑥-, 𝑦-, and 𝑧-axes, respectively. The body force is
𝑓 𝑏 ∈ R3, defined as

𝑓 𝑏 = [0, 0, 𝑢1]𝑇 + 𝑅[0, 0, 𝑚𝑔]𝑇 ,

𝑅 =
⎡

⎢

⎢

⎣

𝑐𝜃𝑐𝜓 (𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜃𝑠𝜓) (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)
𝑐𝜃𝑠𝜓 (𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓) (𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

⎤

⎥

⎥

⎦

,

where 𝑐(⋅) = cos(⋅), 𝑠(⋅) = sin(⋅), and 𝜙, 𝜃, and 𝜓 are the roll, pitch, and
yaw angles, respectively. The translational control input 𝑢1 ∈ R is a
force applied along the body-fixed z-axes. The rotational control inputs
are 𝑢2, 𝑢3, and 𝑢4, and the torque vector 𝜏𝑏 = [𝑢2, 𝑢3, 𝑢4]𝑇 ∈ R3 is
applied to the center of mass in the body-fixed coordinate frame. The
Euler angles 𝛩𝑏 = [𝜙, 𝜃, 𝜓]𝑇 have the following relation with 𝜔𝑏

�̇�𝑏 = 𝛹 (𝛩𝑏)𝜔𝑏, 𝛹 =
⎡

⎢

⎢

⎣

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙∕𝑐𝜃 𝑐𝜙∕𝑐𝜃

⎤

⎥

⎥

⎦

,

where 𝑡(⋅) = tan(⋅). Defining the state variables

𝑋 = [𝑋𝑇
𝑥 , 𝑋

𝑇
𝑦 , 𝑋

𝑇
𝑧 ]
𝑇 , 𝑋𝑥 = [𝑥1, 𝑥2]𝑇 = [𝑥, �̇�]𝑇 ,

𝑋𝑦 = [𝑦1, 𝑦2]𝑇 = [𝑦, �̇�]𝑇 , 𝑋𝑧 = [𝑧1, 𝑧2]𝑇 = [𝑧, �̇�]𝑇 ,

𝛩 = [𝛩𝑇𝜙 , 𝛩
𝑇
𝜃 , 𝛩

𝑇
𝜓 ]
𝑇 , 𝛩𝜙 = [𝜙1, 𝜙2]𝑇 = [𝜙, �̇�]𝑇 ,

𝛩𝜃 = [𝜃1, 𝜃2]𝑇 = [𝜃, �̇�]𝑇 , 𝛩𝜓 = [𝜓1, 𝜓2]𝑇 = [𝜓, �̇�]𝑇 ,

the state space equations for (1) can be written as

�̇� = 𝐴𝑋 + 𝐵𝐹𝑋 , 𝑦𝑥 = 𝐶𝑋,

�̇� = 𝐴𝛩 + 𝐵𝐹𝛩, 𝑦𝜃 = 𝐶𝛩,
(2)

where 𝑋 ∈ 𝐷𝑋 ⊂ R6 and 𝛩 ∈ 𝐷𝛩 ⊂ R6, and 𝐷𝑋 and 𝐷𝛩 bounded.
We define 𝐷𝛩 = 𝐷𝛩1

× 𝐷𝛩2
where 𝛩1 = [𝜙1, 𝜃1, 𝜓1]𝑇 ∈ 𝐷𝛩1

⊂ R3

and 𝛩2 = [𝜙2, 𝜃2, 𝜓2]𝑇 ∈ 𝐷𝛩2
⊂ R3 where 𝐷𝛩1

= 𝐷𝜙𝑠 × 𝐷𝛩𝑠 × 𝐷𝜓𝑠
with 𝐷𝜙𝑠 = {−𝜋∕2 < 𝜙1 < 𝜋∕2}, 𝐷𝛩𝑠 = {−𝜋∕2 < 𝜃1 < 𝜋∕2}, and
𝐷𝜓𝑠 = {−𝜋∕2 < 𝜓1 < 𝜋∕2}. The matrices are 𝐴 = block diag[𝐴1, 𝐴1, 𝐴1],
𝐵 = block diag[𝐵1, 𝐵1, 𝐵1], and 𝐶 = block diag[𝐶1, 𝐶1, 𝐶1] where

𝐴1 =
[

0 1
0 0

]

, 𝐵1 =
[

0
1

]

, 𝐶1 = [1, 0],

𝐹𝑋 =
[

𝐹𝑥, 𝐹𝑦, 𝐹𝑧
]𝑇 and 𝐹𝛩 =

[

𝐹𝜙, 𝐹𝜃 , 𝐹𝜓
]𝑇 are given by

𝐹𝑋 = − 1
𝑚

⎡

⎢

⎢

(𝑐𝜙1𝑠𝜃1𝑐𝜓1 + 𝑠𝜙1𝑠𝜓1)𝑢1
(𝑐𝜙1𝑠𝜃1𝑠𝜓1 − 𝑠𝜙1𝑐𝜓1)𝑢1

⎤

⎥

⎥

+
⎡

⎢

⎢

0
0
⎤

⎥

⎥

,

⎣ (𝑐𝜙1𝑐𝜃1)𝑢1 ⎦ ⎣𝑔⎦
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𝜎

Fig. 1. Coordinates of a quadrotor.

Fig. 2. The multi-time-scale structure of the proposed output feedback controller. The
EHGO resides in the fastest time scale to provide estimates of states (�̂� and �̂�) and
uncertainties (�̂�𝑋 and �̂�𝛩). The translational controller (feedback linearization) receives
the translational estimates (�̂�), uncertainties (�̂�𝛩), and reference trajectory (𝑋𝑟) and
then passes the rotational reference trajectory (𝛩𝑟) to the rotational controller, which
resides in the second fastest time scale. Next, the rotational controller (RLS-DI) receives
the rotational reference (𝛩𝑟) and translational input (𝑢1) and then passes control inputs
(𝑢2 , 𝑢3 , 𝑢4) to the quadrotor dynamics, which resides in the slowest time scale. Lastly,
the quadrotor dynamics under the translational and rotational uncertainties (𝜎𝑋 and
𝜎𝛩) takes in the control inputs (𝑢1 , 𝑢2 , 𝑢3, 𝑢4) to track the given trajectories (𝑋𝑟 and 𝜓𝑟)
and outputs the new states (𝑋 and 𝛩).

𝐹𝛩 = 𝐹𝛩1
+ 𝐵𝑑𝜏𝑏, 𝐵𝑑 = 𝛹 (𝛩1)𝐼−1,

𝐹𝛩1
= �̇� (𝛩)𝜔𝑏 + 𝛹 (𝛩1)[−𝐼−1𝜔𝑏 × 𝐼𝜔𝑏],

where 𝑔 = 9.81 (m∕s2) is gravitational acceleration. The system equa-
tions of (2) in the presence of uncertainties are rewritten as

�̇� = 𝐴𝑋 + 𝐵[𝐹𝑋𝑛 (𝛩, 𝑢1) + 𝜎𝑋 (𝑡)],

�̇� = 𝐴𝛩 + 𝐵[𝐹𝛩𝑛 (𝛩,𝑈𝑅) + 𝜎𝛩(𝑡)],

where 𝐹𝑋𝑛 = [𝐹𝑥𝑛 , 𝐹𝑦𝑛 , 𝐹𝑧𝑛 ]
𝑇 and 𝐹𝛩𝑛 = [𝐹𝜙𝑛 , 𝐹𝜃𝑛 , 𝐹𝜓𝑛 ]

𝑇 are a nominal
model of 𝐹𝑋 and 𝐹𝛩, respectively, 𝑈𝑅 = [𝑢2, 𝑢3, 𝑢4]𝑇 is the rota-
tional control input, 𝜎𝑋 and 𝜎𝛩 are the translational and rotational
disturbances, respectively (see Fig. 1).

Assumption 1. The functions 𝜎𝑋 (𝑡) and 𝜎𝛩(𝑡) are continuously differ-
entiable and bounded as per the requirements of the EHGO.

There is a mapping that describes the relationship between the
actuators and the control inputs 𝑢𝑖 for 𝑖 = 1,… , 4 as follows.

𝑢 =  (𝑋,𝛩) + (𝑋,𝛩,𝑈 )

where  ∈ 𝐷𝐹 ⊂ R4 and  ∈ 𝐷𝐺 whose dimension is appropriate to 𝑈 .
The domains 𝐷𝐹 and 𝐷𝐺 are compact sets.

3. Control design in continuous time

In this section, an output feedback controller will be designed
using a multi-time-scale structure. The illustration of the system’s
architecture is shown in Fig. 2. We utilized the multi-time-scale struc-
ture to overcome the underactuation, and it is achieved by stratifying
gains of the quadrotor’s plant dynamics, controllers, and observers. For
example, the controller forces the rotational dynamics to be faster than
the translational dynamics by employing a higher gain on the rotational
3

dynamics than the translational dynamics. The fastest time scale is for
the EHGO in order for the EHGO to readily provide estimates and
uncertainties to the translational and rotational controller. The second
fastest time scale is for the rotational controller, which receives the
estimates from the EHGO, and outputs the rotational control inputs
which to be used in the plant dynamics. The slowest time scale is for
the quadrotor plant dynamics that updates the states according to the
control inputs.

To adaptively update and handle the input Jacobian according to
the uncertainties that exist in the input Jacobian, we utilize the DI
with the RLS method. The RLS recursively computes the coefficient
matrix of the input Jacobian, instead of using the fixed input Jacobian.
Since the RLS recursively computes the tracking error rather than
solely computing the current tracking error, the coefficient matrix is
adaptively updated according to the combined tracking error, reflecting
uncertainties presented in the input Jacobian. Note that our newly
developed Recursive Least Square with Dynamic Inversion (RLS-DI)
control method is for the rotational controller, while the translational
controller is employed from FL method [26,27].

3.1. Extended high-gain observers

The EHGO estimates unmeasured states and uncertainties and uti-
lizes high feedback gains to recover the peaking of the estimation and
to guarantee the stability of the closed-loop system. Thus, to attenuate
the effect of the disturbances, the EHGO in [24] is designed as
̇̂𝑋 = 𝐴�̂� + 𝐵[𝐹𝑋𝑛 (�̂�, 𝑢1) + �̂�𝑋 (𝑡)] +𝐻𝑥(𝜀3)(𝑦𝑥 − 𝐶�̂�),
̇̂
𝑋 = 𝐻𝑥𝑒 (𝑦𝑥 − 𝐶�̂�),
̇̂𝛩 = 𝐴�̂� + 𝐵[𝐹𝛩𝑛 (�̂�, 𝑈𝑅) + �̂�𝛩(𝑡)] +𝐻𝜃(𝜀3)(𝑦𝜃 − 𝐶�̂�),
̇̂𝜎𝛩 = 𝐻𝜃𝑒 (𝑦𝜃 − 𝐶�̂�),

(3)

where the estimates of 𝑋 and 𝛩 are �̂� = [�̂�𝑇
𝑥 , �̂�𝑇

𝑦 , �̂�𝑇
𝑧 ]
𝑇 and

�̂� = [�̂�𝑇𝜙 , �̂�𝑇𝜃 , �̂�𝑇𝜓 ]
𝑇 , respectively. Furthermore, �̂�𝑥 = [�̂�1, �̂�2]𝑇 ,

�̂�𝑦 = [�̂�1, �̂�2]𝑇 , �̂�𝑧 = [�̂�1, �̂�2]𝑇 , �̂�𝜙 = [�̂�1, �̂�2]𝑇 , �̂�𝜃 = [�̂�1, �̂�2]𝑇 ,
�̂�𝜓 = [�̂�1, �̂�2]𝑇 . The estimates of 𝜎𝑋 and 𝜎𝛩 are �̂�𝑋 = [�̂�𝑥, �̂�𝑦, �̂�𝑧]𝑇

and �̂�𝛩 = [�̂�𝜙, �̂�𝜃 , �̂�𝜓 ]𝑇 , respectively. The observer gains, 𝐻𝑥, 𝐻𝑥𝑒 , 𝐻𝜃 ,
and 𝐻𝜃𝑒 are defined as

𝐻𝑥 = block diag[𝐻𝑥1 ,𝐻𝑥2 ,𝐻𝑥3 ], 𝐻𝑥𝑖 = [𝛼𝑖1∕𝜀3, 𝛼𝑖2∕𝜀23]
𝑇 ,

𝐻𝑥𝑒 = diag(𝛼𝑥3∕𝜀33, 𝛼𝑦3∕𝜀
3
3, 𝛼𝑧3∕𝜀

3
3), 𝑖 = 𝑥, 𝑦, 𝑧,

𝐻𝜃 = block diag[𝐻𝜃4 ,𝐻𝜃5 ,𝐻𝜃6 ], 𝐻𝜃𝑗 = [𝛼𝑗1∕𝜀3 𝛼𝑗2∕𝜀23]
𝑇 ,

𝐻𝜃𝑒 = diag(𝛼𝜙3∕𝜀33, 𝛼𝜃3∕𝜀
3
3, 𝛼𝜓3∕𝜀

3
3), 𝑗 = 𝜙, 𝜃, 𝜓.

(4)

where gains 𝛼𝑖,𝑗 for 𝑖 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 and 𝑗 = 1, 2, 3 are chosen such that
the polynomials, 𝑠3 +𝛼𝑖1𝑠2 +𝛼𝑖2𝑠+𝛼𝑖3 for 𝑖 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 , are Hurwitz.
0 < 𝜀3 < 1 is a small positive constant.

3.2. Output feedback controller for rotational dynamics (RLS-DI)

The output feedback control for rotational dynamics is designed
based on the estimates from the EHGO. Our RLS-DI is introduced to deal
directly with the input Jacobian. In the DI method, the control inputs
cannot be computed if the Jacobian matrix is calculated as singular due
to the uncertain inputs in the controller. To avoid this issue, we define
a sector condition as follows.

Assumption 2. There is a unique continuously differentiable function
𝑈 (𝑡, 𝛩, 𝑈𝑅, 𝜙𝑣, 𝜃𝑣) such that 𝑈∗

𝑅 = 𝑈 (𝑡, 𝛩, 𝑈𝑅, 𝜙𝑣, 𝜃𝑣) solves the equation

𝐅𝛩 = 𝐹𝛩𝑛 (𝑡, 𝛩, 𝑈
∗
𝑅) + 𝜎𝛩 − 𝑓𝑟𝛩 (𝑡, 𝛩) = 0 (5)

where 𝐹𝛩𝑛 is a nominal model, and 𝑓𝑟𝛩 is a reference vector. The
derivative �̇�∗ is bounded on compact sets of 𝛩. Furthermore, there is
𝑅
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a known matrix 𝐾, such that the terms 𝐹𝛩𝑛 +𝜎𝛩 −𝑓𝑟𝛩 satisfy the sector
ondition

𝑟
𝑇𝐾𝐅𝛩 ≥ 𝛽𝑠𝑟

𝑇 𝑠𝑟 (6)

ith 𝑠𝑟 = 𝑈𝑅 − 𝑈∗
𝑅 and the positive constant 𝛽 > 0.

Given the estimates from EHGO , the rotational controller utilizes
LS-DI as

2�̇�𝑅 = −𝑃 𝑇𝐅�̂�𝑠 , 𝑈𝑅(0) = 𝑈𝑅0
, (7)

�̂�𝑠
= 𝐹𝛩𝑛 + �̂�𝛩 − 𝑓𝑟�̂� =

⎡

⎢

⎢

⎢

⎣

𝐹𝜙𝑛 + �̂�𝜙𝑠 − 𝑓𝑟�̂�
𝐹𝜃𝑛 + �̂�𝜃𝑠 − 𝑓𝑟�̂�
𝐹𝜓𝑛 + �̂�𝜓𝑠 − 𝑓𝑟�̂�

⎤

⎥

⎥

⎥

⎦

, (8)

here 𝑃 is a coefficient matrix with �̇� = −𝑃 𝑇 𝑃 , 𝑃 (0) = 𝑃0, and 𝜀2
atisfies 0 < 𝜀3 ≪ 𝜀2 < 1 for the multi-time-scale separation. �̂�𝑠 and �̂�𝛩𝑠
re a saturated �̂� and �̂�𝛩, respectively. 𝑈𝑅 ∈ 𝐷𝑅 ⊂ R3, 𝑃 ∈ 𝐷𝑃 ⊂ R3×3

here 𝐷𝑅 and 𝐷𝑃 are bounded. Furthermore, the reference vector 𝑓𝑟�̂� ,
s given by

𝑟�̂�
=

⎡

⎢

⎢

⎢

⎣

𝑓𝑟�̂�
𝑓𝑟�̂�
𝑓𝑟�̂�

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑘𝜙1 (𝜙1 − 𝜙𝑣) − 𝑘𝜙2 �̂�2𝑠
−𝑘𝜃1 (𝜃1 − 𝜃𝑣) − 𝑘𝜃2 �̂�2𝑠
−𝑘𝜓1 (𝜓1 − 𝜓𝑟) − 𝑘𝜓2 �̂�2𝑠

⎤

⎥

⎥

⎦

. (9)

𝑣 and 𝜃𝑣 are the trajectories given from the translational controller as
12), and 𝜓𝑟 is a differentiable bounded reference. The control gains
re

𝜙1 = 𝑘𝜃1 = 𝑘𝜓1 =
𝑘1
𝜀21
, 𝑘𝜙2 = 𝑘𝜃2 = 𝑘𝜓2 =

𝑘2
𝜀1
, (10)

here 𝑘1 and 𝑘2 are chosen such that the polynomial 𝑠2 + 𝑘2𝑠 + 𝑘1 is
urwitz. The small positive constant 𝜀1 is chosen to satisfy the multi-

ime-scale separation condition 0 < 𝜀3 ≪ 𝜀2 ≪ 𝜀1 < 1, and to ensure a
quick convergence of 𝜙1, 𝜃1, and 𝜓1 to the trajectories 𝜙𝑣, 𝜃𝑣, and 𝜓𝑑 ,
respectively. In (8) and (9), 𝑖2𝑠 and �̂�𝑖𝑠 for 𝑖 = 𝜙, 𝜃, 𝜓 are

̂2𝑠 =𝑀𝑖2𝑠 sat
(

𝑖2𝑠
𝑀𝑖2𝑠

)

, �̂�𝑖𝑠 =𝑀�̂�𝑙𝑠 sat
(

�̂�𝑖𝑠
𝑀�̂�𝑖𝑠

)

. (11)

where the saturation operator sat(𝑒) is defined as

sat(𝑒) =
{

𝑒, if |𝑒| ≤ 1,
sign(𝑒), if |𝑒| > 1.

The saturation levels, 𝑀𝑖2𝑠 and 𝑀�̂�𝑖𝑠 , are chosen so as not to be active
under state feedback control.

3.3. Output feedback controller for translational dynamics

The output feedback control for translational dynamics is designed
based on the estimates from the EHGO. To overcome the mechanical
underactuation, 𝜙1 and 𝜃1 are taken as virtual inputs 𝜙𝑣 = 𝜙1 and 𝜃𝑣 =
𝜃1 provided by the rotational dynamics, which is in a faster time scale
than translational dynamics. The control inputs for the translational
dynamics are 𝜙𝑣, 𝜃𝑣, and 𝑢1. The control inputs are [26,27]

𝑢1 = −
𝑚(𝑓𝑧 − 𝑔)

cos𝜙𝑣 cos 𝜃𝑣
,

𝜙𝑣 = tan−1
( (𝑓𝑥 sin𝜓𝑟 − 𝑓𝑦 cos𝜓𝑟) cos 𝜃𝑣

𝑓𝑧 − 𝑔

)

,

𝜃𝑣 = tan−1
(𝑓𝑦 sin𝜓𝑟 + 𝑓𝑥 cos𝜓𝑟

𝑓𝑧 − 𝑔

)

(12)

where

⎡

⎢

⎢

⎣

𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑘𝑥1 (𝑥1 − 𝑥𝑟) − 𝑘𝑥2 (�̂�2𝑠 − �̇�𝑟) + �̈�𝑟 − �̂�𝑥𝑠
−𝑘𝑦1 (𝑦1 − 𝑦𝑟) − 𝑘𝑦2 (�̂�2𝑠 − �̇�𝑟) + �̈�𝑟 − �̂�𝑦𝑠
−𝑘𝑧1 (𝑧1 − 𝑧𝑟) − 𝑘𝑧2 (�̂�2𝑠 − �̇�𝑟) + �̈�𝑟 − �̂�𝑧𝑠

⎤

⎥

⎥

⎦

,

𝑖1 and 𝑘𝑖2 are chosen such that the polynomials, 𝑠2 + 𝑘𝑖2𝑠 + 𝑘𝑖1 for
= 𝑥, 𝑦, 𝑧, are Hurwitz. Here, 𝑖2𝑠 and �̂�𝑖𝑠 for 𝑖 = 𝑥, 𝑦, 𝑧 are the same as
11).
4

. Stability analysis of the closed-loop system

In this section, we will show the stability analysis of the closed-
oop system based on the Lyapunov analysis. First, we will define the
rror variables of the closed-loop system, which consists of translational
ynamics, rotational dynamics, output feedback controllers, and EHGO.
econd, the closed-loop system is derived as the singularly perturbed
orm for the stability analysis.

.1. Error dynamics of extended high-gain observer

The error variables of the EHGO are 𝜂 = [𝜂𝑇𝑋 , 𝜂
𝑇
𝛩]
𝑇 , where

𝑖 = [𝜂𝑖1 , 𝜂𝑖2 , 𝜂𝑖3 ]
𝑇 , 𝜂𝑖1 =

𝑖1 − 𝑖1
𝜀23

, 𝜂𝑖2 =
𝑖2 − 𝑖2
𝜀3

, 𝜂𝑖3 = 𝜎𝑖(𝑡) − �̂�𝑖(𝑡)

for 𝑖 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 . The EHGO error dynamics is written as

𝜀3�̇� = 𝐴𝜂𝜂 + 𝜀3
[

�̄�1𝛥1 + �̄�2𝛥2
]

, (13)

where the matrices 𝐴𝜂 = block diag[𝛬𝑥, 𝛬𝑦, 𝛬𝑧, 𝛬𝜙, 𝛬𝜃 , 𝛬𝜓 ] ∈ R18×18,
�̄�1 = block diag [𝐵𝑒1 ,… , 𝐵𝑒1 ] ∈ R18×6, and �̄�2 = block diag
[𝐵𝑒2 ,… , 𝐵𝑒2 ] ∈ R18×6 are given by

𝛬𝑖 =
⎡

⎢

⎢

⎣

−𝛼𝑖1 1 0
−𝛼𝑖2 0 1
−𝛼𝑖3 0 0

⎤

⎥

⎥

⎦

, 𝐵𝑒1 = [0, 1, 0]𝑇 , 𝐵𝑒2 = [0, 0, 1]𝑇 ,

and 𝛥𝑖 for 𝑖 = 1, 2, 3 are

𝛥1 =
[

(𝐹𝑋 (𝛩, 𝑢1) − 𝐹𝑋 (�̂�, 𝑢1))∕𝜀3
(𝐹𝛩(𝛩,𝑈𝑅) − 𝐹𝛩(�̂�, 𝑈𝑅))∕𝜀3

]

, 𝛥2 =
[

�̇�𝑋
�̇�𝛩

]

.

We note that the disturbances, 𝜎𝑖 for 𝑖 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 , need to be con-
tinuously differentiable as described in Assumption 1. The components
of 𝛥1, i.e., 𝐹𝑋 (𝛩, 𝑢1) − 𝐹𝑋 (�̂�, 𝑢1) and 𝐹𝛩(𝛩,𝑈𝑅) −𝐹𝛩(�̂�, 𝑈𝑅), have the
bounds ‖𝐹𝑋 (𝛩, 𝑢1) −𝐹𝑋 (�̂�, 𝑢1)‖ ≤ 𝜀3‖𝜂‖ and ‖𝐹𝛩(𝛩,𝑈𝑅) −𝐹𝛩(�̂�, 𝑈𝑅)‖ ≤
𝜀3‖𝜂‖. 𝛥2 have the bounds ‖𝛥2‖ ≤ 𝑘𝛿1 with 𝑘𝛿1 > 0.

4.2. Error dynamics of rotational controller (RLS-DI)

The error variable for the RLS-DI is 𝑠𝑟 = 𝑈𝑅 − 𝑈∗
𝑅 where 𝑈∗

𝑅 is the
solution of (5). The error dynamics of the RLS-DI are written as

𝜀2�̇�𝑟 = −𝑃 𝑇𝐅𝛩(𝑡, 𝛩, 𝑈∗
𝑅 + 𝑠𝑟) + 𝛥𝜎𝛩 + 𝛥𝛩 − 𝜀2�̇�∗

𝑅, (14)

where

𝛥𝜎𝛩 =
⎡

⎢

⎢

⎣

�̂�𝜙𝑠 − 𝜎𝜙
�̂�𝜃𝑠 − 𝜎𝜃
�̂�𝜓𝑠 − 𝜎𝜓

⎤

⎥

⎥

⎦

, 𝛥𝛩 =
⎡

⎢

⎢

⎣

𝑘𝜙2 (�̂�2𝑠 − 𝜙2)
𝑘𝜃2 (�̂�2𝑠 − 𝜃2)
𝑘𝜓2 (�̂�2𝑠 − 𝜓2)

⎤

⎥

⎥

⎦

4.3. Error dynamics of rotational dynamics

The rotational error variable is 𝑒𝛩 = [𝑒𝑇𝜙 , 𝑒
𝑇
𝜃 , 𝑒

𝑇
𝜓 ]
𝑇 where

𝑒𝑖 = [𝑒𝑖1 , 𝑒𝑖2 ]
𝑇 , 𝑒𝑖1 = 𝑖1 − 𝑖𝑟, 𝑒𝑖2 = 𝜀1(𝑖2 − 𝑖𝑟2 ),

for 𝑖 = 𝜙, 𝜃, 𝜓 . The rotational error dynamics is formulated as

𝜀1�̇�𝛩 = 𝐴𝛩𝑒𝛩 + 𝐵[𝑘1(𝛩𝑣 − 𝛩𝑟) + 𝜀21𝐅𝛩 − 𝜀21�̈�𝑟 − 𝜀1𝑘2�̇�𝑟], (15)

where 𝛩𝑣 = [𝜙𝑣, 𝜃𝑣, 𝜓𝑟]𝑇 , and 𝐴𝛩 = (𝐴 − 𝐵𝐿𝛩) with 𝐿𝛩 = block diag
[𝐿𝜙, 𝐿𝜃 , 𝐿𝜓 ] with 𝐿𝑖 = [𝑘𝑖1 , 𝑘𝑖2 ] for 𝑖 = 𝜙, 𝜃, 𝜓 .

4.4. Error dynamics of translational dynamics

We begin by defining the translational error variable 𝑒𝑋 = 𝑋 − 𝑋𝑟
where 𝑋𝑟 = [𝑥𝑟, �̇�𝑟, 𝑦𝑟, �̇�𝑟, 𝑧𝑟, �̇�𝑟]𝑇 . The translational error dynamics are
written as
�̇�𝑋 = 𝐴𝑋𝑒𝑋 + 𝐵[𝐹𝑋1

+ 𝐹𝑋2
],

𝐹𝑋1
= 𝑓𝑋 (𝛩, 𝑢1) − 𝑓𝑋 (𝛩𝑣, 𝑢1), (16)
𝐹𝑋2
= 𝑓𝑋 (𝛩𝑣, 𝑢1) − 𝑓𝑋 (𝛩𝑟, 𝑢1),
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where 𝐴𝑋 = 𝐴 − 𝐵𝐿𝑋 , 𝐿𝑋 = block diag[𝐿𝑥, 𝐿𝑦, 𝐿𝑧] and 𝐿𝑖 = [𝑘𝑖1 , 𝑘𝑖2 ]
for 𝑖 = 𝑥, 𝑦, 𝑧.

Now, we will analyze the multi-time-scale structure of the closed-
loop systems (13)–(16). The steady state of each subsystem is investi-
gated by sequentially introducing the boundary layer system from the
fastest to the slowest subsystems. Let (13) be the fastest subsystem and
other subsystems as the slow. The boundary layer system of (13) is
obtained by setting 𝜀3 = 0 on the right-hand side of (13) as

𝜀3�̇� = 𝐴𝜂𝜂,

which is exponentially stable at 𝜂 = 0. With the quasi-steady state 𝜂,
let (14) be the fastest subsystem among the subsystems of the reduced
system consisting of (14)–(16). We have the boundary layer system of
(14) by setting 𝜀2 = 0 on the right-hand side of (14) and letting 𝜂 = 0,
𝜀3 = 0 as

𝜀2�̇�𝑟 = −𝑃 𝑇𝐅𝛩(𝑡, 𝛩, 𝑈∗
𝑅 + 𝑠𝑟).

To analyze the stability, we define a Lyapunov function of the rotational
controller as 𝑉𝑑 = 𝑠𝑇𝑟 𝑃𝑠𝑟. By taking the derivative of the Lyapunov
function with respect to time and using (6) such that 𝐾 is 𝑃 , we have

�̇�𝑑 = −
(

2
𝜀2

)

𝑠𝑇𝑟 𝑃
𝑇𝐅𝛩 − 𝑠𝑇𝑟 𝑃

𝑇 𝑃𝑠𝑟 ≤ −
(

2
𝜀2

)

𝑠𝑇𝑟 𝑠𝑟 − 𝑠
𝑇
𝑟 𝑃

𝑇 𝑃𝑠𝑟,

which is asymptotically stable at 𝑠𝑟 = 0. With the quasi-steady state 𝜂
and 𝑠𝑟, consider that subsystem (15) is the fastest subsystem among the
reduced system consisting of (15) and (16). The boundary layer system
of (15) is obtained by setting 𝜀1 = 0 on the right-hand side of (15) as

𝜀1�̇�𝛩 = 𝐴𝛩𝑒𝛩,

hich is exponentially stable at 𝑒𝛩 = 0. The boundary layer system of
he remaining subsystem (16) is

̇𝑋 = 𝐴𝑋𝑒𝑋 ,

hich is exponentially stable at 𝑒𝑋 = 0.

heorem 1. For closed-loop systems (13)–(16), suppose that Assump-
ions 1 and 2 are satisfied. Choose compact sets 𝐗1 ⊂ R12 in the domain
𝑋 × 𝐷𝛩, 𝐗2 ⊂ R3, 𝐗3 ⊂ R12, and 𝐗4 ⊂ R6. Suppose that all trajectories
𝑋,𝛩,𝑈𝑅, �̂�, �̂�, �̂�𝑋 , �̂�𝛩) start from (𝑋(0), 𝛩(0)) ∈ 𝐗1, 𝑈𝛩(0) ∈ 𝐗2,
�̂�(0), �̂�(0)) ∈ 𝐗3, and (�̂�𝑋 (0), �̂�𝛩(0)) ∈ 𝐗4. Then, there exists 𝜀∗ > 0 such
hat for

1 < 𝜀
∗, 𝜀2 < 𝜀

∗, 𝜀3 < 𝜀
∗,

𝜀2
𝜀1

< 𝜀∗,
𝜀3
𝜀2

< 𝜀∗, (17)

∙ all trajectories are bounded;
∙ ‖𝑋−𝑋𝑟‖ → 0 and ‖𝑈𝑅−𝑈∗

𝑅‖ → 0 as 𝜀1 in (10) and (15), 𝜀2 in (7)
and (14), 𝜀3 in (4) and (13), (𝜀2∕𝜀1), and (𝜀3∕𝜀2) approach zero
for all 𝑡 ≥ 0.

roof. We define Lyapunov functions of each multi-time-scale system
or the stability analysis of the closed-loop system.

𝑋 = 𝑒𝑇𝑋𝑃𝑋𝑒𝑋 , 𝑉𝛩 = 𝑒𝑇𝛩𝑃𝛩𝑒𝛩, 𝑉𝑟 = 𝐅𝑇𝛩𝐅𝛩, 𝑉𝜂 = 𝜂𝑇 𝑃𝜂𝜂, (18)

here 𝑃𝑖 are found by solving 𝐴𝑇𝑖 𝑃𝑖 +𝑃𝑖𝐴𝑖 = −𝑄𝑖 with 𝑖 = 𝑋,𝛩, 𝜂, and
𝑋 , 𝐴𝛩, and 𝐴𝜂 are defined in (13), (15), and (16), respectively.

We define the following domains in which we will conduct the
tability analysis of the closed-loop system

𝑎 = {𝑉𝑋 ≤ 𝑎1} × {𝑉𝛩 ≤ 𝑎2} × {𝑉𝑟 ≤ 𝑎3},

𝑏 = {𝑉𝑋 ≤ 𝑏1} × {𝑉𝛩 ≤ 𝑏2} × {𝑉𝑟 ≤ 𝑏3},

𝑐 = {𝑉𝑋 ≤ 𝑐1} × {𝑉𝛩 ≤ 𝑐2},

(19)

here 0 < 𝑎1 < 𝑏1 < 𝑐1, 0 < 𝑎2 < 𝑏2 < 𝑐2, and 0 < 𝑎3 < 𝑏3. We use
multi-time-scale separation approach in which the dynamics are split

nto the subsystems described earlier, and we utilize the sets in (19) for
his analysis.
5

p

First, we show that all trajectories enter a positively invariant set
sing the Lyapunov functions in (18) for each subsystem. A brief
escription of the proof for this work is similar to that shown in earlier
ork on high-gain observers and DI, e.g., [22] as follows

∙ Initially, the trajectories (𝑒𝑋 , 𝑒𝛩, 𝑠𝑟) and 𝜂 starting from
(𝑒𝑋 (0), 𝑒𝛩(0), 𝑠𝑟(0)) ∈ 𝛺𝑎 and 𝜂(0) which lies outside of the set
{𝑉𝜂 ∈ 𝜌𝜀23}, enter the set 𝛺𝑏 × {𝑉𝜂 ≤ 𝜌1𝜀23}.

∙ Next, the trajectories (𝑒𝑋 , 𝑒𝛩, 𝑠𝑟) and 𝜂 starting from within 𝛺𝑏 ×
{𝑉𝜂 ≤ 𝜌𝜀23} enter the set 𝛺𝑐 × {𝑉𝑟 ≤ 𝜌2𝜇21} × {𝑉𝜂 ≤ 𝜌1𝜀23} with
𝜇1 = (𝜀2∕𝜀1).

∙ Finally, the trajectories (𝑒𝑋 , 𝑒𝛩, 𝑠𝑟) and 𝜂 starting from within
𝛺𝑐 × {𝑉𝑟 ≤ 𝜌2𝜇21} × {𝑉𝜂 ≤ 𝜌1𝜀23} enter the set {𝑉𝑋 ≤ 𝑒1} × {𝑉𝛩 ≤
𝑒2𝜀21} × {𝑉𝑟 ≤ 𝜌2𝜇21} × {𝑉𝜂 ≤ 𝜌1𝜀23}, where 𝑒1 and 𝑒2 are positive
constants.

Since all three steps above are similar, we will only prove the
irst bullet. In the first bullet, the initial trajectories (𝑒𝑋 , 𝑒𝛩, 𝑠𝑟) and 𝜂
tart from the set (𝑒𝑋 (0), 𝑒𝛩(0), 𝑠𝑟(0)) ∈ 𝛺𝑎 and 𝜂 ∉ {𝑉𝜂 ∈ 𝜌𝜀23} where
𝜂(0)‖ ≤ (𝑘∕𝜀23). The derivative of 𝑉𝜂 with respect to time along the
rajectories (13)–(16) is as follows.

̇𝜂 = −
(

1
𝜀3

)

𝜂𝑇 𝜂 +
(

�̄�1𝛥1 + �̄�2𝛥2
)𝑇 𝑃𝜂𝜂.

Using the boundness of the term (�̄�1𝛥1 + �̄�2𝛥2) in (13) for all
(𝑒𝑋 , 𝑒𝛩, 𝑠𝑟) ∈ 𝛺𝑎, we obtain

�̇�𝜂 ≤ − 1
𝜀3

‖𝜂‖2 + 𝑘𝑜1‖𝜂‖
2 + 𝑘𝑜2‖𝜂‖

≤ − 1
2𝜀3

‖𝜂‖2 + 𝑘𝑜2‖𝜂‖ for 𝜀3 <
1

2𝑘𝑜1

(20)

where 𝑘𝑜𝑖 for 𝑖 = 1, 2 are positive constants. With 𝜀3 < 1∕(2𝑘𝑜1 ),

�̇�𝜂 ≤ −
(

𝛾1
𝜀3

)

𝑉𝜂 , for 𝑉𝜂 ≥ 𝜌1𝜀
2
3

where 𝜌1 = 𝑃𝜂𝑚𝛾
2
2 for some 𝛾1 > 0 and 𝛾2 > 0, and 𝑃𝜂𝑚 = 𝜆𝑚𝑎𝑥(𝑃𝜂).

For the second bullet, since the trajectory 𝜂 is restricted to the set
{

𝑉𝜂 ≤ 𝜌1𝜀23
}

, 𝜂 has the upper bound, ‖𝜂‖ ≤ 4𝑘𝑜3𝜀3 for positive constant
𝑘𝑜3 . With this upper bound, a similar procedure can be used to prove
the second and third bullet, so those proofs are omitted.

Next, we will prove that the size of the ultimate boundedness can
be arbitrarily small with sufficient small control parameters, 0 < 𝜀3 ≪
𝜀2 ≪ 𝜀1 < 1. The derivative of the Lyapunov function 𝑉𝑋 and 𝑉𝛩 along
he trajectories (13)–(16) are as follows.

̇𝑋 = −𝑒𝑇𝑋𝑒𝑋 + 2
[

𝐹𝑋1
+ 𝐹𝑋2

]𝑇
𝐵𝑇 𝑃𝑋𝑒𝑋

≤ − ‖

‖

𝑒𝑋‖‖
2 + 2𝑃𝑋𝑚

(

𝑘𝑋1
‖

‖

𝑒𝛩‖‖ + 𝑘𝑋2

)

‖

‖

𝑒𝑋‖‖ ,
(21)

̇𝛩 = −
(

1
𝜀1

)

𝑒𝑇𝛩𝑒𝛩

+ 2
[

𝜀1
(

𝐅𝑇𝛩 − �̈�𝑇𝑟
)

− 𝑘2�̇�𝑇𝑟 +
(

2𝑘1
𝜀1

)

(

𝛩𝑣 − 𝛩𝑟
)𝑇

]

𝐵𝑇 𝑃𝛩𝑒𝛩

≤ −
(

1
𝜀1

)

‖

‖

𝑒𝛩‖‖
2 +

[

𝜀1𝑘𝛩1

(

‖

‖

𝐅𝛩‖‖ + 𝛩𝑟1
)

+ 𝑘𝛩2
𝛩𝑟2

]

‖

‖

𝑒𝛩‖‖

(22)

where ‖

‖

𝑃𝑋‖‖ ≤ 𝑃𝑋𝑚 , 𝛩𝑟1 and 𝛩𝑟2 are the rotational reference and its
erivatives, respectively. 𝑘𝑋𝑖 for 𝑖 = 1, 2 and 𝑘𝛩𝑖 for 𝑖 = 1, 2 are some
ositive constant.
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The derivative of 𝑉𝑟 with respect to time is

�̇�𝑟 = −
(

1
𝜀2

)

𝐅𝑇𝛩

(

𝜕𝐅𝛩
𝜕𝑈𝑅

)(

𝜕𝐅𝛩
𝜕𝑈𝑅

)𝑇
𝐅𝛩

−
(

1
𝜀2

)

𝐅𝑇𝛩

(

𝜕𝐅𝛩
𝜕𝑈𝑅

)(

𝜕𝐅𝛩
𝜕𝑈𝑅

)𝑇
[

𝐅𝛩𝑠 − 𝐅𝛩
]

+ 𝐅𝑇𝛩

[(

𝜕𝐅𝛩
𝜕𝜓𝑟

)

�̇�𝑟 +
(

𝜕𝐅𝛩
𝜕𝜎𝛩

)

�̇�𝛩

]

+ 𝐅𝑇𝛩

(

𝜕𝐅𝛩
𝜕𝛩

){(

1
𝜀1

)

[

𝐴𝛩𝑒𝛩 + 𝑘1𝐵
(

𝛩𝑑 − 𝛩𝑟
)]

+
[

𝜀1
(

𝐅𝛩 − �̈�𝑟
)

+ �̇�𝑟 + �̃�𝑟
]}

≤ −
(𝑘𝑟1
𝜀2

)

‖

‖

𝐅𝛩‖‖
2 +

(𝑘𝑟2
𝜀2

)

‖

‖

𝐅𝛩‖‖
(

𝛥𝜎𝛩 + 𝛥𝛩
)

+
[(

1
𝜀1

)

𝑘𝑟3
‖

‖

𝑒𝛩‖‖ + 𝜀1𝑘𝑟4
(

‖

‖

𝐅𝛩‖‖ + 𝑘𝑟5𝛩𝑟
)

]

‖

‖

𝐅𝛩‖‖ + �̄�2
‖

‖

𝐅𝛩‖‖

(23)

where 𝑘𝑟𝑖 for 𝑖 = 1,… , 5 are positive constants. Note that 𝛥𝜎𝛩 and 𝛥𝛩
are bounded as 𝛥𝜎𝛩 ≤ 𝑘𝛩6

‖𝜂‖ and 𝛥𝜎𝛩 ≤ 𝜀3𝑘𝛩7
‖𝜂‖, respectively, after

the system passes the transient period of the EHGO.
Now we will show the stability of the entire coupled subsystem

using the method in Section 9.3 of [28] with (20)–(23). We define
𝑆1 =

√

𝑉𝑋 , 𝑆2 =
√

𝑉𝛩, 𝑆3 =
√

𝑉𝑟, 𝑆4 =
√

𝑉𝜂 and take the upper
ight-hand derivative 𝐷+(⋅) of each variable, resulting in

𝐷+𝑆1 ≤ −𝑘𝑎1𝑆1 + 𝑘𝑎2𝑆2 + 𝑘𝑎3𝑆3

𝐷+𝑆2 ≤ −
(𝑘𝑏1
𝜀1

)

𝑆2 + 𝜀1𝑘𝑏2𝑆3 + 𝜀1𝑘𝑏4𝛿1(𝑡) + 𝑘𝑏5𝛿2(𝑡)

𝐷+𝑆3 ≤ −
(𝑘𝑐1
𝜀2

− 𝜀1𝑘𝑐2

)

𝑆3 +
(𝑘𝑐3 + 𝑘𝑐4𝜀3

𝜀2

)

𝑆4

+
(𝑘𝑐5
𝜀1

)

𝑆1 + 𝜀1𝑘𝑐6𝛿3(𝑡) + 𝑘𝑐7𝛿4(𝑡)

𝐷+𝑆4 ≤ −
(𝑘𝑑1
𝜀3

)

𝑆4 + 𝑘𝑑3𝛿5(𝑡)

(24)

where the positive constants 𝛿𝑖 for 𝑖 = 1,… , 5 are nonvanishing pertur-
bations, and the positive constants 𝑘𝑝𝑖 for 𝑝 = 𝑎, 𝑏, 𝑐, 𝑑 and 𝑖 = 1,… , 7
are independent on 𝜀1, 𝜀2, and 𝜀3. (24) can be formed as a matrix form
as

𝐷+𝑆 ≤ −𝐻𝑆 + 𝜀1𝑍1 +𝑍2

where

𝐷+𝑆 =
[

𝐷+𝑆1, 𝐷
+𝑆2, 𝐷

+𝑆3, 𝐷
+𝑆4

]𝑇 ,

𝑆 = [𝑆1, 𝑆2, 𝑆3, 𝑆4]𝑇 ,

𝑍1 =
[

0, 𝑘𝑏4𝛿1(𝑡), 𝑘𝑐6𝛿3(𝑡), 0
]𝑇
,

𝑍2 =
[

0, 𝑘𝑏5𝛿2(𝑡), 𝑘𝑐7𝛿4(𝑡), 𝑘𝑑5𝛿5(𝑡)
]𝑇
.

𝐻 is quasi-monotone increasing [29] with 0 < 𝜀3 ≪ 𝜀2 ≪ 𝜀1 < 1
because the off-diagonal components of 𝐻 are positive, as explained
similarly in Appendix B of [22]. Now consider the differential equation
with respect to the control inputs 𝑈 =

[

𝑢1, 𝑢2, 𝑢3, 𝑢4
]𝑇 as

�̇� = −𝐻𝑈 + 𝜀1𝑍1 +𝑍2 (25)

with initial conditions 𝑈 (0) = 𝑆(0). We can show that 𝑆 ≤ 𝑈 for
∀𝑡 > 0 and that the steady state of (25) is 𝐻−1 (𝜀1𝑍1 +𝑍2

)

using the
vectorial comparison method presented in Chapter IX of [29]. Thus, we
can conclude that the size of the ultimate boundedness can be made
arbitrarily small since the ultimate boundedness is dependent on 𝜀𝑖 for
𝑖 = 1, 2, 3. □

5. Numerical simulation results

The proposed output feedback controller is validated through nu-
6

merical simulation. The objective of the simulation is to evaluate the
Table 1
RMSe values of the DOB-CSMC, EHGO-FL, and EHGO-RLS-DI.

DOB-CSMC EHGO-FL EHGO-RLS-DI

RMSe Degrated 3.7084 3.1233

tracking performance of the proposed controller along the reference
trajectories, 𝑓𝑟 = [5 sin 𝑡, 5 cos 𝑡, 5 sin 𝑡]𝑇 , and 𝜓𝑑 = 0 in the presence
f the external disturbances 𝜎𝑋 = [−3 sin 2𝑡, −3 sin 2𝑡, −3 sin 2𝑡]𝑇 and
𝛩 = [cos 𝑡, cos 𝑡, cos 𝑡]𝑇 . The system parameters were 𝑚 = 1 kg,
𝑥𝑥 = 0.0093 kg m2, 𝐼𝑦𝑦 = 0.0107 kg m2, and 𝐼𝑧𝑧 = 0.0195 kg m2. The
ontrol gains for the plant and reference systems are 𝑘𝑥1 = 𝑘𝑦1 = 𝑘𝑧1 =
, 𝑘𝑥2 = 𝑘𝑦2 = 𝑘𝑧2 = 3, 𝑘1 = 50, and 𝑘2 = 10. The control parameters
re 𝜀1 = 0.18, 𝜀2 = 0.001, and 𝜀3 = 0.0001 which are chosen to satisfy
17). The observer gains are 𝛼𝑖1 = 𝛼𝑖2 = 3, 𝛼𝑖3 = 1, 𝛼𝑗1 = 𝛼𝑗2 = 5, and
𝛼𝑗3 = 1, for 𝑖 = 𝑥, 𝑦, 𝑧, and 𝑗 = 𝜙, 𝜃, 𝜓 . The initial conditions for the
ystem states in the numerical simulation are

1(0) = 1, 𝑥2(0) = 0.2, 𝑦1(0) = 1, 𝑦2(0) = −0.1,

1(0) = 1, 𝑧2(0) = 0.1, 𝜙1(0) = 0, 𝜙2(0) = 0,

1(0) = 0, 𝜃2(0) = 0, 𝜓1(0) = 0, 𝜓2(0) = 0,

he initial conditions of the RLS-DI are

2(0) = 48, 𝑢3(0) = 0.5, 𝑢4(0) = 0.5, 𝑃0 = 𝐼3.

he initial conditions of the EHGO are
̂1(0) = �̂�2(0) = �̂�1(0) = �̂�2(0) = �̂�1(0) = �̂�2(0) = 0,

̂𝑥(0) = �̂�𝑦(0) = �̂�𝑧(0) = 0, �̂�1(0) = �̂�1(0) = �̂�1(0) = 1,
̂2(0) = 0.1, �̂�2(0) = 0, �̂�2(0) = 1,

̂𝜃(0) = 1, �̂�𝜙(0) = 0.1, �̂�𝜓 (0) = 0.

In Fig. 3(a), the translational trajectories 𝑥1, 𝑦1, and 𝑧1 and the
ranslational references 𝑥𝑟, 𝑦𝑟, and 𝑧𝑟 are shown. Excellent tracking is
chieved even in the presence of unknown external disturbances 𝜎𝑋
nd 𝜎𝛩. In Fig. 3(b), trajectories 𝜙𝑣, and 𝜃𝑣 from the RLS-DI and the
eference 𝜓𝑑 are indistinguishable from the trajectories 𝜙1, 𝜃1, and 𝜓1.
he four control inputs 𝑢1, 𝑢2, 𝑢3, and 𝑢4 are shown in Fig. 3(c). In
igs. 3(g) and 3(h), 𝛩 and �̂� are indistinguishable. The results shown

in Fig. 3(i) indicate that the EHGO successfully estimates the rotational
disturbances, 𝜎𝛩. In Figs. 3(d) and 3(e), �̂� is on top of the estimates
𝑋. The results shown in Fig. 3(f) present that the EHGO successfully
estimates the translational disturbances 𝜎𝑋 . At the beginning of the
simulation in Figs. 3(e)–3(i), the peaking phenomena are shown and
quickly disappear due to the high gains of the EHGO.

In Fig. 4, the EHGO-FL [24], DOB-CSMC, and EHGO-RLS-DI are
compared by perturbing the input Jacobian. The same diagonal matrix
is added on each of the input Jacobian for perturbation. While the
EHGO-RLS-DI and the EHGO-FL successfully track the references, the
DOB-CSMC is degraded. To show the effectiveness of the EHGO-RLS-
DI over the EHGO-FL, we utilized the sum of the root-mean-square
error (RMSe) over the experiment time duration as a performance
parameter, i.e., RMSe = rms(𝑥1 − 𝑥𝑟) + rms(𝑦1 − 𝑦𝑟) + rms(𝑧1 − 𝑧𝑟) +
rms(𝜓𝑟 − 𝜓1). The results shown in Table 1 indicate that the proposed
EHGO-RLS-DI outweighs the EHGO-FL by 15.78%. The outperformance
of the EHGO-RLS-DI is because the RLS method recursively computes
the input Jacobian’s coefficient 𝑃 according to (7) in the direction of
attenuating the perturbations.

6. Hardware implementation

6.1. Control design in discrete time

For the hardware implementation, we discretized the proposed

controller using the forward difference method with sampling time
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Fig. 3. Note that the red dashed lines are references and the solid black lines are the estimates or states. (a) The references 𝑥𝑟, 𝑦𝑟, and 𝑧𝑟 and states 𝑥1, 𝑦1, and 𝑧1 are plotted.
(b) The references 𝜙𝑣, 𝜃𝑣, and 𝜓𝑟 and states 𝜙1, 𝜃1, and 𝜓1 are plotted. (c) The control inputs 𝑢1, 𝑢2, 𝑢3, 𝑢4 are plotted. (d) The states 𝑥1, 𝑦1, and 𝑧1 and estimates �̂�1, �̂�1, and �̂�1
are plotted. (e) The states 𝑥2, 𝑦2, and 𝑧2 and estimates �̂�2, �̂�2, and �̂�2 are plotted. (f) The disturbances 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 and estimates �̂�𝑥, �̂�𝑦, and �̂�𝑧 are plotted. (g) The states 𝜙1,
𝜃1, and 𝜓1 and estimates �̂�1, �̂�1, and �̂�1 are plotted. (h) The states 𝜙2, 𝜃2, and 𝜓2 and estimates �̂�2, �̂�2, and �̂�2 are plotted. (i) The disturbances 𝜎𝜙, 𝜎𝜃 , and 𝜎𝜓 and estimates �̂�𝜙,
�̂�𝜃 , and �̂�𝜓 are plotted. The initial part of the time was enlarged and plotted to the right of each plot.
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Fig. 4. Given the references, the performance of the EHGO-FL (solid red line), the DOB-
CSMC (solid green lines), and the EHGO-RLS-DI (solid blue lines) with a perturbation
are compared.

𝑇 = 0.004 (s). The EHGO in (3) is discretized as follows

�̂�𝑘+1 = �̂�𝑘 + 𝑇 [𝐴�̂�𝑘 + 𝐵
(

𝐹𝑋 (�̂�, 𝑢1) + ̂𝜎𝑋 (𝑡)
)

+𝐻𝑥(𝜀3)(𝑦𝑥 − 𝐶�̂�)],

�̂�𝑋𝑘+1 = �̂�𝑋𝑘 + 𝑇 [𝐻𝑥𝑒 (𝑦𝑥 − 𝐶�̂�)],

�̂�𝑘+1 = �̂�𝑘 + 𝑇 [𝐴�̂�𝑘 + 𝐵
(

𝐹𝛩(�̂�, 𝑈𝑅) + �̂�𝛩(𝑡)
)

+𝐻𝜃(𝜀3)(𝑦𝜃 − 𝐶�̂�)],

�̂�𝛩𝑘+1 = �̂�𝛩𝑘 + 𝑇 [𝐻𝜃𝑒 (𝑦𝜃 − 𝐶�̂�)],

(26)

where 𝑇 is the sampling period, and estimates of 𝑋 and 𝛩 are �̂�𝑘 =
[�̂�𝑇

𝑥 , �̂�
𝑇
𝑦 , �̂�

𝑇
𝑧 ]
𝑇 and �̂�𝑘 = [�̂�𝑇𝜙 , �̂�

𝑇
𝜃 , �̂�

𝑇
𝜓 ]
𝑇 , respectively. The high gains

of the EHGO are the same as the continuous time system in (4). The
output feedback controller for the translational dynamics is the same
as in (12) utilizing the estimates of the states and disturbances from the
EHGO.

The output feedback controller for the rotational dynamics is

𝑈𝑅𝑘+1 = 𝑈𝑅𝑘 −
(

𝑇
𝜀2

)

𝑃 𝑇𝐅�̂�𝑠 , 𝑈𝑅0
= 𝑈𝑅(0),

𝑃𝑘+1 = 𝑃𝑘 −
(

𝑇
𝜀2

)

𝑃 𝑇 𝑃 , 𝑃0 = 𝑃 (0).
(27)

n the real system, the control inputs consist of the thrust force 𝑢1 and
orques 𝑢2, 𝑢3, and 𝑢4 are mapped into four thrust forces corresponding
o four propellers of the quadrotor. This mapping will be explained in
etail in Section 6.3.

As a demonstration of the time responses of the discrete time
ontrol system, we discretized the proposed controller as shown in
26) and (27) and conducted the discrete time numerical simulation.
7

d

The sampling rate is 250 Hz, the same as the sensor sampling rate of
the hardware configuration that will be elaborated in Section 6.2. The
control gains for the plant and reference system are 𝑘𝑥1 = 𝑘𝑦1 = 𝑘𝑧1 =
22, 𝑘𝑥2 = 𝑘𝑦2 = 𝑘𝑧2 = 6, 𝑘1 = 50, and 𝑘2 = 10. The control parameters
are 𝜀1 = 0.21, 𝜀2 = 0.03, 𝜀3 = 0.025, which satisfy (17). The initial
condition of 𝑃0 in (7) is chosen as 𝑃0 = 𝐼3 where 𝐼3 ⊂ R3×3 is an
identity matrix. The EHGO gains defined in (4) are 𝛼𝑖1 = 𝛼𝑖2 = 5, 𝛼𝑖3 = 1,
𝛼𝑗1 = 𝛼𝑗2 = 3, 𝛼𝑗3 = 1. With these values, the rise time, peak time, and
ettling time are 0.628, 0.848, and 1.5 s, respectively.

.2. Hardware configuration

We used a Pixhawk-4 Flight Management Unit (FMU) to implement
he proposed controller. The FMU contains accelerometers, gyroscopes,
magnetometer, a barometer, and a GPS. All sensors except GPS are

ncapsulated within the Pixhawk FMU, while the GPS is connected
xternally. An Extended Kalman Filter fuses the sensor data and pro-
ides necessary signals, such as 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝜙1, 𝜃1, 𝜓1, 𝜙2,
2, and 𝜓2. The signal 𝑧1 is mainly provided by the barometer. All
ensors are operated at a fixed sampling rate of 250 Hz. To minimize
he disturbance from vibrations, the FMU is placed on a vibration-
amping board. For actuators, we used four 810 kV motors with four
0 A Electronic Speed Controllers (ESCs) and four 10 × 4.5 carbon fiber
otors. A three-cell 2200 mAh Lithium Polymer battery is used as a
ower source. A detailed configuration of the quadrotor is shown in
ig. 5.

.3. Actuator mapping and system parameter measurement

Since the control signals indicate the torque along the three body
xes and vertical thrust force, the control signals need to be converted
nto rotor force signals. Requested forces 𝑓𝑖 for 𝑖 = 1,… , 4 corre-
ponding to four actuators are mapped to control signals as follows.

𝑖(𝑘 + 1) =
𝑢1(𝑘 + 1)

4
−
𝑢2(𝑘 + 1)

4𝑑
+
𝑢3(𝑘 + 1)

4𝑑
+
𝑢4(𝑘 + 1)

4𝑐
(28)

where 𝑖 = 1, . . . ,4 are the index of each motor, and 𝑑 = 0.153 (m) is the
istance between the actuator and the center of mass of the airframe
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Fig. 5. Sensor connection configuration of the quadrotor.

Fig. 6. Trajectories 𝑥1, 𝑦1, and 𝑧1 of EHGO-RLS (red solid lines) and EHGO-FL (blue
solid lines), and references 𝑥𝑟, 𝑦𝑟, 𝑧𝑟 (black dashed lines) of the outdoor experiment
are plotted.

Fig. 7. The frame-by-frame time lapses images of the hardware experiment.

in the 𝑥 and 𝑦 directions. 𝑐 is the drag coefficient of the rotors, found
to be 0.1. Note that the thrust force 𝑢1 is equally distributed into four
motors, and the rolling and pitching torques corresponding to 𝑢2 and 𝑢3
are converted into forces by dividing with moment arm 𝑑. The yawing
torque 𝑢4 is scaled by the drag coefficient 𝑐. Then, the desired forces
are mapped to PWM signals, and the function between forces and PWM
signals is obtained experimentally. We use a load cell with Arduino
to measure the thrust force of the motor. The function is obtained as
follows.

𝑀𝑖(𝑘) = 𝐺1𝑓
3
𝑖 (𝑘) + 𝐺2𝑓

2
𝑖 (𝑘) + 𝐺3𝑓𝑖(𝑘) + 𝐺4

for 𝑖 = 1,… , 4, where 𝐺1 = 2.269 × 10−7, 𝐺2 = −3.5 × 10−3, 𝐺3 =
2.598 × 10−3, and 𝐺4 = 9.676 × 103. The moment of inertia is found to
be 𝐼𝑥𝑥 = 0.0134 kg∕m2, 𝐼𝑦𝑦 = 0.0143 kg∕m2, and 𝐼𝑧𝑧 = 0.0235 kg∕m2

obtained by trifilar pendulum experiment as described in [30]. The
mass of the quadrotor 𝑚 = 1.164 kg.
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Table 2
RMSe values of EHGO-FL and EHGO-RLS-DI for hardware
experiments.

EHGO-RLS-DI EHGO-FL

𝑥1 0.1664 0.2999
𝑦1 0.1497 0.2130
𝑧1 0.1399 0.2198
𝜓 0.0215 0.0387
Total 0.4776 0.7714

6.4. Experimental test results

The experimental platform is configured with the proposed EHGO-
RLS-DI. In this case, a second order EHGO is utilized. The control
gains for the plant and reference system are 𝑘𝑥1 = 𝑘𝑦1 = 4, 𝑘𝑧1 = 5,
𝑘𝑥2 = 𝑘𝑦2 = 5, 𝑘𝑧2 = 7.5, 𝑘1 = 2, and 𝑘2 = 4. The control parameters are
chosen as 𝜀1 = 0.18, 𝜀2 = 0.0013, 𝜀3 = 0.0012, which satisfy (17). The
initial condition of 𝑃0 in (7) is chosen as 𝑃0 = 0.18 ⋅𝐼3. The EHGO gains
defined in (4) are 𝛼𝑖2 = 0.074, 𝛼𝑖3 = 0.0001, 𝛼𝑗2 = 0.166, 𝛼𝑗3 = 0.0001.

The objective of the experiment is to track the reference trajectories
𝑋𝑟 and 𝜓𝑟 in the presence of disturbances and uncertainties. To fulfill
the condition, we conducted the outdoor experiment under strong wind
gust conditions with an average wind speed of 3.2 (m∕s) according
to the weather report. Note that the wind gust is the main source
of the external disturbances 𝜎𝑋 and 𝜎𝛩, and it is well-assumed to be
continuously differentiable. In addition, we can assume that the speed
of the wind gust is bounded since it has a finite power of disturbances.
We conducted the experimental test as follows. Initially, the quadrotor
was flown by a remote control transmitter. Once the quadrotor was
stabilized, the trajectory tracking mode was activated. The trajectory
tracking mode includes three consecutive tasks; position-holding mode,
circle-tracking mode, and again position-holding mode. For 0 ≤ 𝑡 < 15,
the position-holding mode is activated with reference trajectories 𝑥𝑟 =
𝑥𝑖𝑛𝑖𝑡, 𝑦𝑟 = 𝑦𝑖𝑛𝑖𝑡, 𝑧𝑟 = 𝑧𝑖𝑛𝑖𝑡, and 𝜓𝑟 = 0 where subscript 𝑖𝑛𝑖𝑡 indicates
the initial positions. Then, for 15 ≤ 𝑡 < 55, the circle-tracking mode
is activated with reference trajectories 𝑥𝑟 = 𝑥𝑖𝑛𝑖𝑡 + 2.5 ⋅ cos (𝜋𝑡∕10),
𝑦𝑟 = 𝑦𝑖𝑛𝑖𝑡 + 2.5 ⋅ sin (𝜋𝑡∕10), 𝑧𝑟 = 𝑧𝑖𝑛𝑖𝑡, and 𝜓𝑟 = 0. Lastly, for 𝑡 ≥ 55, the
quadrotor holds its position on the initial positions, 𝑥𝑟 = 𝑥𝑖𝑛𝑖𝑡, 𝑦𝑟 = 𝑦𝑖𝑛𝑖𝑡,
𝑧𝑟 = 𝑧𝑖𝑛𝑖𝑡, and 𝜓𝑟 = 0. The tasked reference trajectory is shown in Fig. 6.

In Fig. 6, the hardware experiment results of the EHGO-RLS-DI and
EHGO-FL are presented. Utilizing EHGO, both methods were able to
track trajectories under external disturbances, which are primarily due
to wind gusts. Before the activation of the trajectory tracking mode,
the quadrotor moved freely in both the 𝑥 and 𝑦 directions. After the
activation, the quadrotor attempted to move to the location where the
mode was activated. Then the quadrotor tracked the given trajectories
smoothly. In Table 2, the RMSe values are introduced to present the
superior performance of the EHGO-RLS-DI over the EHGO-FL. The
result shows that the EHGO-RLS-DI improves the RMSe value over
the EHGO-FL by 44.5%, 29.7%, 36.4%, 44%, and 38.1% for 𝑥, 𝑦, 𝑧,
𝜓 , and as a total, respectively. The frame-by-frame time-lapse images
of the outdoor hardware experiments are shown in Fig. 7. The video
of the outdoor experiment can also be found in the following link:
https://youtu.be/ltcx1X3WuIU.

7. Conclusions

In this paper, we developed a novel trajectory tracking output
feedback control design for quadrotors in the presence of uncertainties
and disturbances using the recursive least square method with dynamic
inversion (RLS-DI). The multi-time-scale approach was well suited to
this problem to deal with the underactuation present in quadrotors. The
FL for the translational dynamics was in charge of resolving non-affine
control inputs, whereas the dynamic inversion based on the recursive
least square method for the rotational dynamics dealt with uncertain in-
put coefficients. The EHGO provides estimates of unmeasurable system

https://youtu.be/ltcx1X3WuIU
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states and uncertainties for the controllers. We presented the compre-
hensive stability analysis of the closed-loop system using the singular
perturbation method. Through numerical simulation, we showed that
our proposed control EHGO-RLS-DI is suitable to attenuate the distur-
bances and uncertainties in the input Jacobian, and it outperforms the
EHGO-FL and DOB-CSMC control method. Furthermore, the outdoor
experiments in the wind gusts showed that our EHGO-RLS-DI overcame
the disturbances and successfully tracked the reference trajectories, and
outperformed the EHGO-FL.
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