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Nonaffine Helicopter Control Design and Implementation Based on a Robust
Explicit Nonlinear Model Predictive Control

Joohwan Seo , Seongwon Lee, Joonho Lee , and Jongeun Choi , Member, IEEE

Abstract— Control design for a helicopter is a challenging
problem because of its nonaffine inputs, its underactuated charac-
teristics, and highly coupled dynamics. To solve a control problem
of the helicopter under model uncertainties and disturbance
present environments, an explicit nonlinear model predictive
control (ENMPC), a dynamic inversion (DI), and an extended
high-gain observer (EHGO) are combined in a multi-time-scale
fashion. The multi-time-scale scaled structure and the ENMPC
provide the framework of the control design, the DI deals
with nonaffine control inputs, and the EHGO estimates the
unmeasured system states and uncertainties. The proposed con-
trol design is discretized to be implemented on a small-scale
helicopter. The successful outdoor experiments with the proposed
control implemented on autopilot hardware demonstrate the
validity of our approach in the presence of model uncertainties
and wind disturbances.

Index Terms— Dynamic inversion (DI), explicit nonlin-
ear model predictive control (ENMPC), extended high-gain
observer (EHGO), nonaffine control inputs, underactuated
mechanical systems.

I. INTRODUCTION

W ITH the advance of computation power of embedded
computers, battery capacities, and motor performances,

unmanned aerial vehicle (UAV) industries are growing and
applied rapidly in everyday life. Especially, helicopters have
their superiority over quadrotors on agile movement and the
faster response despite its unstable dynamics [1]–[3]. The
control design for high-performance autonomous helicopters
is challenging. This is because helicopters are underactu-
ated mechanical and highly nonlinear systems. In addition,
the exogenous disturbances and model uncertainties make the
control design of a helicopter more difficult [4], [5].

A popular approach to deal with the underactuated mechan-
ical system is a time-scale separation [6]. The time-scale
separation lies on the concept that the inner loop is faster than
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the outer loop so that the controllers are designed to overcome
the lack of the number of inputs [7], [8].

Sliding-mode and backstepping techniques for helicopter
control are widely employed to deal with the underactu-
ated mechanical systems since the helicopter model can be
approximated by a strict-feedback form. Based on the back-
stepping technique, other approaches are combined to deal
with disturbances and uncertainties [6], [9], [10]. In [9],
the passivity-based adaptive backstepping control for quadro-
tors, i.e., underactuated mechanical systems, was proposed.
The backstepping control is utilized to deal with underac-
tuated mechanical systems, whereas parameter uncertainties
are dealt with using adaptive law. In [10], continuous sliding
mode control with disturbance observer (DOB-CSMC) was
utilized for the helicopter control. The continuous-sliding-
mode control was utilized to reduce chattering, while the
disturbance observer was employed to deal with both matched
and mismatched uncertainties. Some approach utilizes reced-
ing horizon estimator to deal with time-varying aerodynamic
parameters in [11].

Uncertainty estimators based on neural networks have been
adopted by many researchers in the control design of UAVs.
In [12], the neural networks are utilized to estimate uncer-
tainties and disturbances for the robust control of the heli-
copter. The neural networks are trained to learn the quadrotor
dynamics when landing in [13], with feedback linearization.
However, the neural networks are not readily applicable to
vehicle onboard since the neural networks often require heavy
computations.

Helicopter control designs using feedback linearization with
disturbance observers were proposed in [4] and [14]. An active
disturbance rejection control was suggested in [4], using the
dynamic feedback linearization [15]. In [14], explicit non-
linear model predictive control (ENMPC) provided optimal
control inputs for the tracking control with a disturbance
observer. However, the aforementioned methods considered
approximated dynamics, i.e., linearized control inputs, which
results in a smaller region of attraction than nonaffine control
inputs.

In order to deal with nonaffine control inputs, a dynamic
inversion (DI) scheme was employed in [16], based on the
time-scale separation. In addition, the extended high-gain
observer (EHGO) was used to estimate the model uncer-
tainties and external disturbances for rotational dynamics.
In [17], the output feedback control design in the presence
of uncertainties was presented. The output feedback control
with DI was designed for a quadrotor helicopter in [18], and
its implementation was presented in [19].

In this brief, we propose a control design for the tracking
problem of a small-scale helicopter. The proposed control
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method is used to overcome the uncertainties and underac-
tuated mechanics of a helicopter and to guarantee optimal
tracking. A multi-time-scale structure is employed to deal
with the underactuated mechanical system. Based on the
multi-time-scale structure, the ENMPC provides a framework
of the control design for optimal trajectory tracking. The DI
is added to deal with nonaffine control inputs. The EHGO is
utilized to estimate the model uncertainties, unmeasured sys-
tem states, and external disturbances. The main contributions
are listed as follows.

1) A novel control design for a small-scale helicopter is
developed in this brief. This novel control design utilizes
the DI to the ENMPC framework to increase the region
of attraction by dealing with nonaffine control inputs,
deal with input uncertainties, and guarantee optimal
tracking.

2) The stability of its continuous-time closed-loop system
is analyzed.

3) The proposed control design is discretized for the imple-
mentation of the small-scale helicopter. Benchmark sim-
ulation results of the trajectory tracking are presented
to show the effectiveness and outperformance of the
proposed control design.

4) To demonstrate the feasibility of our control design,
we show the experimental results in the outdoor, where
the incessant disturbances are present, on the small-scale
helicopter using the embedded board.

This brief is an extended version of the conference papers [20]
and [17]. In contrast to [20], in this brief, the mathematical
stability analysis in continuous time is conducted, the bench-
mark simulation results to show the outperformance of our
control design are presented, and the outdoor experiment is
performed to validate the proposed control design. Compared
to [17], the optimality conditions from the ENMPC have been
employed to enhance the control performance.

This brief is organized as follows. In Section II, a helicopter
model and corresponding state-space equations are presented.
In Section III, we design the helicopter controller in continu-
ous time, and the stability analysis is provided. In Section IV,
the discretization of the proposed control design, a hardware
setup, and experimental results are shown. Finally, concluding
remarks are discussed in Section V. The standard notation will
be used in this brief.

II. HELICOPTER DYNAMICS

The coordinate system used throughout this brief is shown
in Fig. 1—north-east-down (NED) coordinates. Following the
generalized control design process, we utilize the helicopter
model in [17], which has rotational and translational dynamics.
The helicopter model for the rotational dynamics is

�̇ = A�+ B FR + Bσ�, Y� = C� (1)

where � = [φ1, φ2, θ1, θ2, ψ1, ψ2]T = [φ, φ̇, θ, θ̇ , ψ, ψ̇ ]T ∈
R

6, where the angles φ, θ, and ψ are along xb, yb, and zb,
respectively, and FR = [ fφ, fθ , fψ ]T = FR(�, ur , ut ). The
uncertainty is σ� = [σφ, σθ , σψ ]T ∈ R

3 in the form of angular

Fig. 1. Model diagram of the helicopter.

acceleration. In this brief, we deal with the domain D� given
by

D� = Dφ × Dθ × Dψ

Dφ = {−aφ ≤ φ1 ≤ aφ
} × {−bφ ≤ φ2 ≤ bφ

}
Dθ = {−aθ ≤ θ1 ≤ aθ } × {−bθ ≤ θ2 ≤ bθ }
Dψ = {−aψ ≤ ψ1 ≤ aψ

} × {−bψ ≤ ψ2 ≤ bψ
}

where 0 < ai < π/2 and bi > 0 are bounded
for i ∈ {φ, θ,ψ}. The matrices A and B are A =
block diag[A1, A1, A1] and B = block diag[B1, B1, B1]. The
measurement Y� is from inertial measurement units (IMU)
and C = block diag[C1,C1,C1]. A1, B1, and C1 are matrices
with

A1 =
[

0 1
0 0

]
, B1 =

[
0
1

]
, C1 = [

1 0
]
. (2)

One may find the equations for FR(�, ur , ut ) = [ fφ, fθ , fψ ]T

in Section S1 of the Supplementary Material or in [20].
In addition, ur = [Tt , a1s , b1s]T is the rotational control

input, and ut = [Tm, φd , θd]T is the translational control input,
where Tt is the thrust force of tail rotor; a1s is main rotor tip’s
angle with respect to the x-axis; b1s is main rotor tip’s angle
with respect to the y-axis; Tm is main rotor’s thrust force;
φd is the reference of φ; and θd is the reference of θ . Note
that control inputs of translational dynamics φd and θd act as
references to rotational dynamics. The inputs ut and ur are
defined in ut ∈ Dt ⊂ R

3 and ur ∈ Dr ⊂ R
3, and the sets Dt

and Dr are compact.
The helicopter model for the translational dynamics can be

approximated as suggested in [8] and [21], as follows:
χ̇ = Aχ + B FT + Bσχ, Yχ = Cχ (3)

where χ = [x1, x2, y1, y2, z1, z2]T = [x, ẋ, y, ẏ, z, ż]T ∈ Dχ ,
where Dχ ∈ R

6 is bounded, and x, y, z are from the global
coordinate system. The uncertainty is σχ = [σx , σy, σz]T ∈ R

3

in the form of the acceleration, and FT = [ fx , fy, fz ]T =
FT (�, ut) ∈ R

3. One may also find the equations of FT (�, ut)
in the Supplementary Material or in [20].

III. CONTROL DESIGN IN CONTINUOUS TIME

A. Applying Dynamic Inversion to ENMPC Framework

Based on the framework of the ENMPC, the DI scheme is
applied, and the EHGO is employed to deal with exogenous
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disturbances. Furthermore, we employ time-scale structure to
cope with an underactuated characteristic of the helicopter.

First, using the method suggested in [22], we obtain the cost
function for the rotational dynamics J� and the cost function
for the translational dynamics Jχ . The necessary condition for
the optimality of the rotational dynamics is given by [22]

∂ J�
∂ur

= 0. (4)

Equation (4) leads to the following equation:
∂ J�
∂ur

=
[
∂ J�
∂Tt

,
∂ J�
∂a1s

,
∂ J�
∂b1s

]T

=
(
∂FR

∂ur

)T

×
⎡
⎣ k1(φ1 − φr )+ k2

(
φ2 − φ̇r

) + (
fφ − φ̈r

) + σφ
k1(θ1 − θr )+ k2

(
θ2 − θ̇r

) + (
fθ − θ̈r

) + σθ
k1(ψ1 − ψr )+ k2

(
ψ2 − ψ̇r

) + (
fψ − ψ̈r

) + σψ

⎤
⎦

= 0 (5)

where gains k1 and k2 are given with the rotational time
horizon εr as

k1 = 10

3ε2
r

, k2 = 5

2εr
. (6)

The detailed derivation can be found in the appendix of [20]
and omitted in this brief. In order to utilize the non-
affine control inputs, we applied a control scheme proposed
in [23]–[25]—the approximate DI. The control input ur that
achieves (5) in our multi-time-scale structure is derived using
the DI as follows:

ε3u̇r = −
(
∂FR

∂ur

)T

×
⎡
⎣ k1(φ1 − φr )+ k2

(
φ2 − φ̇r

) + (
fφ − φ̈r

)
k1(θ1 − θr )+ k2

(
θ2 − θ̇r

) + (
fθ − θ̈r

)
k1(ψ1 − ψr )+ k2

(
ψ2 − ψ̇r

) + (
fψ − ψ̈r

)
⎤
⎦ (7)

for ε3 � 1. We also note that the uncertainty σ� is assumed
to be 0 in the state feedback, not appearing in (7).

Since the rotational references φr and θr are control inputs
of the slower translational dynamics, we may consider φr ≈ φd

and θr ≈ θd as constant, i.e., φ̇r , φ̈r , θ̇r , θ̈r are all 0—see [17].
Therefore, (7) can be further approximated by

ε3u̇r = −
(
∂FR

∂ur

)T
⎡
⎣ k1(φ1 − φd)+ k2φ2 + fφ

k1(θ1 − θd)+ k2θ2 + fθ
k1(ψ1 − ψr )+ k2ψ2 + fψ

⎤
⎦

= −
(
∂FR

∂ur

)T

F�(�, ut , ur , ψr ) (8)

where

F� = FR(�, ur , ut )− FR,r (�, ut , ψr )

FR,r (�, ut , ψr ) =
⎡
⎣ −k1(φ1 − φd)− k2φ2

−k1(θ1 − θd)− k2θ2

−k1(ψ1 − ψr )− k2ψ2

⎤
⎦

which is the same form of the controller with the DI in [17].
Note that the gains (6) are the ones to achieve the optimal

desired closed-loop dynamics F�. The rotational DI controller
is based on the following assumptions.

Assumption 1: 1) In the domains Dχ and D�, the Jaco-
bian matrix (∂FR/∂ur ) is nonsingular.

2) There is a solution u∗
r such that F�(�, u∗

r , ut , ψr ) = 0
from (8).

3) F�(�, ur , ut , ψr ) is Lipschitz in its arguments on the
domains Dχ , D�, Dr , and Dt .

In the same manner, solving the necessary condition for the
optimality of translational dynamics, the following equation is
derived:
∂ Jχ
∂ut

=
[
∂ Jχ
∂Tm

,
∂ Jχ
∂φd

,
∂ Jχ
∂θd

]T

=
(
∂FT

∂ut

)T

×
⎡
⎣ k p(x1 − xr )+ kv(x2 − ẋr )+ ( fx − ẍr )+ σx

k p(y1 − yr )+ kv(y2 − ẏr )+ (
fy − ÿr

) + σy

k p(z1 − zr )+ kv (z2 − żr )+ ( fz − z̈r )+ σz

⎤
⎦

= 0 (9)

where gains k p and kv are given using the translational time
horizon εt as

k p = 10

3ε2
t
, kv = 5

2εt
. (10)

Considering that the translational dynamics are slower than the
rotational dynamics, the translational time horizon εt is larger
enough than the rotational time horizon εr .

The control input ut of (9) is derived in the same manner
as the rotational controller (7) is

ε2u̇t = −
(
∂FT

∂ut

)T
⎡
⎣ k p(x1 − xr )+ kv(x2 − ẋr )+ ( fx − ẍr )

k p(y1 − yr )+ kv (y2 − ẏr )+ (
fy − ÿr

)
k p(z1 − zr )+ kv(z2 − żr )+ ( fz − z̈r )

⎤
⎦

= −
(
∂FT

∂ut

)T

Fχ (χ,�, ut , χr ) (11)

where ε2 � 1, and

Fχ = FT (�, ut)− FT,r (χ, χr )

FT,r (χ, χr ) =
⎡
⎣−k p(x1 − xr )− kv (x2 − ẋr )+ ẍr

−k p(y1 − yr )− kv (y2 − ẏr )+ ÿr

−k p(z1 − zr )− kv (z2 − żr )+ z̈r

⎤
⎦

for the continuously differentiable reference χr = [xr , yr , zr ]T.
The uncertainty σχ does not appear in the state feedback for
the same reason as the rotational dynamics. The gains (10) are
the ones to achieve the optimal desired closed-loop dynamics
Fχ . As in the rotational counterparts, the translational DI
controller is based on the following assumptions.

Assumption 2: 1) In the domains Dχ and D�, the Jaco-
bian matrix (∂FT /∂ut) is nonsingular.

2) There is a solution u∗
t = [T ∗

m, φr , θr ]T such that
Fχ (χ,�, u∗

t , χr ) = 0 from (11).
3) Fχ (χ,�, ut , χr ) is Lipschitz in its arguments on the

domains Dχ , D�, Dr , and Dt .
4) The uncertainties or external disturbances σχ and σ� are

continuously differentiable.
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Remark 1: Our control design is differentiated from the
helicopter control design [14] in the following ways. First,
we define the cost functions in the multi-time-scale structure to
deal with the underactuated mechanical system. By separating
the helicopter dynamics into faster and slower dynamics,
the mismatched disturbance issue in [14] is resolved, which
results from the dynamic extension in [26, Chapter 5.4].
Second, the ENMPC in [14] utilizes the affine control inputs
resulting from the approximated dynamics, which is the
method often used in feedback linearization. However, our
control design utilizes the DI and ENMPC to deal with the
nonaffine control inputs, which results in the enlargement of
the region of attraction.

B. Extended High-Gain Observer

To estimate the unmeasured system states and model uncer-
tainties or external disturbances, we employed the EHGO
as [16], [17], [27]

˙̂χ = Aχ̂ + B
[
FT

(
�̂s, ut

) + σ̂χ
] + Hχ

(
yχ − Cχ̂

)
˙̂σχ = Hσχ

(
yχ − Cχ̂

)
˙̂� = A�̂+ B

[
FR

(
�̂s, ut , ur

) + σ̂�
] + H�

(
y� − C�̂

)
˙̂σ� = Hσ�

(
y� − C�̂

)
(12)

where the estimates of χ and� are χ̂ = [x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2]T

and �̂ = [φ̂1, φ̂2, θ̂1, θ̂2, ψ̂1, ψ̂2]T, respectively. The observer
gains Hχ , Hσχ , H�, and Hσ� are given as

Hχ = block diag[H1, H2, H3]

H� = block diag[H4, H5, H6]

Hi = [
hi1/ε4, hi2/ε

2
4

]
, for i ∈ {1, . . . , 6}

Hσχ = diag
[
h13/ε

3
4, h23/ε

3
4, h33/ε

3
4

]
Hσθ = diag

[
h43/ε

3
4, h53/ε

3
4, h63/ε

3
4

]
(13)

where hi1, hi2, and hi3 are chosen such that the polynomials

s3 + hi1s2 + hi2s + hi3, for i ∈ {1, . . . , 6} (14)

are Hurwitz.
Using the results of the EHGO, the output feedback con-

troller is derived as

ε3u̇r = −
(
∂FR

∂ur

)T
⎡
⎣ k1

(
φ̂1 − φd

) + k2φ̂2,s + fφ + σ̂φ,s
k1

(
θ̂1 − θd

) + k2θ̂2,s + fθ + σ̂θ,s
k1

(
ψ̂1 − ψr

) + k2ψ̂2,s + fψ + σ̂ψ,s

⎤
⎦

= −
(
∂FR

∂ur

)T

F�s

(
�̂s, ur , ut , ψr .σ̂�,s

)

ε2u̇t = −
(
∂FT

∂ut

)T

×
⎡
⎣ k p(x̂1 − xr )+ kv

(
x̂2,s − ẋr

) + ( fx − ẍr)+ σ̂x,s

k p(ŷ1 − yr )+ kv
(
ŷ2,s − ẏr

) + (
fy − ÿr

) + σ̂y,s

k p(ẑ1 − zr )+ kv
(
ẑ2,s − żr

) + ( fz − z̈r )+ σ̂z,s

⎤
⎦

= −
(
∂FT

∂ut

)T

Fχs

(
χ̂s, �̂s, ut , χr , σ̂χ,s

)
(15)

where �̂s = [φ̂1, φ̂2,s , θ̂1, θ̂2,s , ψ̂1, ψ̂2,s ]T, and χ̂s =
[x̂1, x̂2,s , ŷ1, ŷ2,s , ẑ1, ẑ2,s ]T. The subscription s indicates that

Fig. 2. Block diagram of the proposed control design.

the values are saturated to avoid the effect of the peaking,
which results in performance degradation of the EHGO

Xs = MX sat

(
X

MX

)
(16)

where MX is a saturation level of a variable X and sat(·) is
the saturation operator. The proposed control design can be
summarized in the following block diagram in Fig. 2.

Remark 2: We are going to describe the relationship
between the time-scale structure and time horizons of the
ENMPC. It is critical to choose the time horizon of the transla-
tional dynamics longer than the time horizon of the rotational
dynamics, i.e., εt > εr in (6) and (10). Since the output
of the controller for the translational dynamics provides the
reference of the rotational dynamics, the preview of the
translational dynamics should be longer than the rotational
dynamics. To satisfy this condition, the time-scale structure,
i.e., the translational dynamics being slower than the rotational
dynamics, is needed.

C. Stability Analysis

First, we define the error variables e� = [eT
φ, eT

θ , eT
ψ ]T of the

rotational dynamics as follows:
eφ = [

eφ1 , eφ2

]T
, eφ1 = φ1 − φr , eφ2 = εrφ2

eθ = [
eθ1 , eθ2

]T
, eθ1 = θ1 − θr , eθ2 = εrθ2

eψ = [
eψ1 , eψ2

]T
, eψ1 = ψ1 − ψr , eψ2 = εrψ2 (17)

where φr and θr are the elements of u∗
t . The rotational error

dynamics is

εr ė� = (A−B L�)e� − εr B2�̇r +ε2
r B E� + k pr B(�d −�r )

(18)

where �r = [φr , θr , ψr ]T, �d = [φd, θd, ψr ]T, B2 =
block diag [Bb, Bb, Bb] with Bb = [1, 0]T, and E� and L�
are

E� = FR(�, ut, ur )− FR
(
�, ut , u∗

r

)
L� = block diag [Lr , Lr , Lr ], Lr = [

k pr , kvr
]

(19)

with k pr = 10/3 and kvr = 5/2 from (6).
The error variables for the translational dynamics eχ =

[eT
x , eT

y , eT
z ]T are defined as

ex = [
ex1 , ex2

]T
, ex1 = x1 − xr , ex2 = εt (x2 − ẋr)
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ey = [
ey1, ey2

]T
, ey1 = y1 − yr , ey2 = εt (y2 − ẏr )

ez = [
ez1 , ez2

]T
, ez1 = z1 − zr , ez2 = εt (z2 − żr ). (20)

The translational error dynamics is given as follows:
εt ėχ = (

A − B Lχ
)
eχ + ε2

t B Eχ (21)

where Lχ = block diag [Lt , Lt , Lt ], Lt = [k pt, kvt ], and
Eχ = FT (�, ut)− FT (�, u∗

t ), with k pt = 10/3 and kvt = 5/2
from (10). The error dynamics for the rotational and the
translational DIs [17] are

ε3 ṡr = −
(
∂FR

∂ur

)T[
F�(�, ut , ur , ψr )+ Ē�

] − ε3u̇∗
r

ε2 ṡt = −
(
∂FT

∂ut

)T[
Fχ (�, χ, ut , χr )+ Ēχ

] − ε2u̇∗
t (22)

where sr = ur − u∗
r and st = ut − u∗

t are the error variables
for the translational controller and the rotational controller,
respectively, with Ē� = F�s − F� and Ēχ = Fχs − Fχ .

The fast error variables η = [ηT
χ , η

T
�]T for the EHGO are

given by ηχ = [ηT
x , η

T
y , η

T
z ]T and η� = [ηT

φ, η
T
θ , η

T
ψ ]T, where

ηϕ = [
ηϕ1 , ηϕ2 , ηϕ3

]T

ηϕ1 = ϕ1 − ϕ̂1

ε2
4

, ηϕ2 = ϕ2 − ϕ̂2

ε4
, ηϕ3 = σϕ − σ̂ϕ (23)

for ϕ ∈ {x, y, z, φ, θ, ψ}. The error dynamics for the EHGO
are

ε4η̇ = Āη + ε4
[
B̄1�1 + B̄2�2

]
(24)

where

Ā = block diag
[
Ā1, . . . , Ā1

] ∈ R
18×18

B̄1 = block diag
[
B̄a, . . . , B̄a

] ∈ R
18×6

B̄2 = block diag
[
B̄b, . . . , B̄b

] ∈ R
18×6

Ā1 =
⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦, B̄a =

⎡
⎣ 0

1
0

⎤
⎦, B̄b =

⎡
⎣ 0

0
1

⎤
⎦

�1 = 1

ε4

[
FT (�, ut)− FT

(
�̂s, ut

)
FR(�, ut , ur )− FR

(
�̂s, ut , ur

)
]

�2 = [
σ̇x , σ̇y, σ̇z, σ̇φ, σ̇θ , σ̇ψ

]T
. (25)

Now, we will describe the theorem. The stability analysis for
the closed-loop system is motivated by the works regarding
the multi-time-scale framework [16], [17], [27], [28].

Theorem 1: Assumptions 1 and 2 are satisfied. Let X1

be any compact set of (χ,�) ∈ Dχ × D�, X2 be any
compact subset of R

6, and X3 be any compact subset of R
12.

Then, the closed-loop system (18), (21), (22), and (24) is
asymptotically stable in its domains Dχ , D�, Dr , and Dt with
the time scales given by

εr � ε∗, ε2 � ε∗, ε3 � ε∗, ε4 � ε∗

(εr/εt ) � ε∗, (ε3/ε2) � ε∗, (ε4/ε3) � ε∗ (26)

for 0 < ε∗ � 1 and for the initial states (χ(0),�(0)) ∈ X1,
(ut(0), ur (0)) ∈ X2, and (χ̂(0), �̂(0)) ∈ X3.

Proof: Based on the error variables, we take the approxi-
mated rotational cost functions J� and Jχ and consider it as a
part of the Lyapunov function. Note that the approximated

cost functions are not a time integral of a function, but a
constant, since we approximated the cost function using the
Taylor-series expansion and solved it explicitly.

V� = [
eT
� (FR + σ�)

T][�R1 �R2

�T
R2

�R3

][
e�

FR + σ�

]

= J�(e�, FR, σ�) = J�(e�,�, ut , ur , σ�) (27)

where �Ri = block diag [K Ri , K Ri , K Ri ], for i ∈ {1, 2, 3},
with

K R1 =
[
εr εr/2
εr/2 εr/3

]
, K R2 =

[
ε3

r /6
ε3

r /8

]
, K R3 = ε5

r /20.

Likewise, the approximated cost function for the translational
dynamics Jχ is modified as

Vχ =
[
eT
χ

(
FT + σχ

)T
][�T1 �T2

�T
T2

�T3

][
eχ

FT + σχ

]

= Jχ
(
eχ , FT , σχ

) = Jχ
(
eχ ,�, ut , σχ

)
(28)

where �Ti = block diag [KTi , KTi , KTi ], for i ∈ {1, 2, 3}, with

KT1 =
[
εt εt/2
εt/2 εt/3

]
, KT2 =

[
ε3

t /6
ε3

t /8

]
, KT3 = ε5

t /20.

Considering relations between the trajectories χ and eχ , and
� and e�, it is worth to note that(

eχ , e�
) ∈ {

Vχ ≤ a1
} × {V� ≤ a2} �⇒ (χ,�) ∈ X1 (29)

i.e., eχ and e� are on its own ellipsoids. Note that the radii of
the ellipsoids are chosen by the selection of the time horizon
as (27) and (28). The derivative of the rotational Lyapunov
function V� is derived as follows:

V̇� =
(
∂ J�
∂e�

)T

ė� +
(
∂ J�
∂�

)T

�̇

+
(
∂ J�
∂ur

)T

u̇r +
(
∂ J�
∂ut

)T

u̇t +
(
∂ J�
∂σ�

)T

σ̇�

=
(
∂ J�
∂e�

)T(
1

εr
A�e�−B2�̇r +εr B E�+ k pr

εr
B(�d −�r )

)

+
(
∂ J�
∂�

)T

(A�+ B FR)− 1

ε2

(
∂ J�
∂ut

)T(
∂FT

∂ut

)T

Fχs

− 1

ε3
FT
�

(
∂FR

∂ur

)(
∂FR

∂ur

)T

F�− 1

ε3
FT
�

(
∂FR

∂ur

)(
∂FR

∂ur

)T

Ē�

+
(
∂ J�
∂σ�

)T

σ̇� (30)

where A� = A − B L� and Ē� = F�s − F�.
Based on the time scale (26),

V̇� ≤
(

1

εr
kr1‖e�‖ + kr2‖�̇r‖ + kr3εr‖sr‖ + kr4

)
kr5

+ kr6 + 1

ε2
kr7‖Fχs ‖ − 1

ε3

∥∥∥∥∂ J�
∂ur

∥∥∥∥
2

+ 1

ε3
kr8‖η‖‖F�‖

+ kr9‖σ̇�‖ < 0 (31)

where kri for i ∈ {1, . . . , 9} are positive constants regarding
the boundaries. Similarly, the derivative of the translational
Lyapunov function Vχ is

V̇χ =
(
∂ Jχ
∂eχ

)T

ėχ +
(
∂ Jχ
∂�

)T

�̇+
(
∂ Jχ
∂ut

)T

u̇t +
(
∂ Jχ
∂σχ

)T

σ̇χ
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=
(
∂ Jχ
∂eχ

)T(
1

εt
Aχeχ + εt B Eχ

)

+
(
∂ Jχ
∂�

)T

(A�+ B FR)− 1

ε2
FT
χ

(
∂FT

∂ut

)(
∂FT

∂ut

)T

Fχ

− 1

ε2
FT
χ

(
∂FT

∂ut

)(
∂FT

∂ut

)T

Ēχ +
(
∂ Jχ
∂σχ

)T

σ̇χ (32)

where Aχ = A−B Lχ and Ēχ = Fχs − Fχ . Taking εt ∼ 1 for
the sake of convenience, its inequality is given as follows:
V̇χ ≤ (

kt1‖eχ‖ + kt2‖st‖
)
kt3 + kt4

− 1

ε2

∥∥∥∥∂ Jχ
∂ut

∥∥∥∥
2

+ 1

ε2
kt5‖η‖‖Fχ‖ + kt6‖σ̇χ‖ < 0 (33)

where kt j for j ∈ {1, . . . , 6} are positive constants regarding
the boundaries. The saturation (16) has been adopted to
avoid the peaking phenomenon [27]. As mentioned in [29],
the peaking period shrinks to zero for sufficiently small ε4 and
does not affect much to the closed-loop stability. Therefore,
the saturation period can be omitted in the stability analysis.
We take the Lyapunov functions for the faster dynamics,
such as the DIs and the EHGO, from [17]. The Lyapunov
functions for the DI are given as Vr = FT

�F� and Vt = FT
χ Fχ

for the rotational and translational DI, respectively. Finally,
the Lyapunov function for the EHGO is Vη = ηT Pηη, where
ĀPη + Pη ĀT = −I . The rest of the proof is similar to that
of Chapter 3.3.4 of [17] and can be analyzed easily using the
method in Section 9.3 of [30], thus omitted in this brief due
to the page limit.

IV. EXPERIMENTAL TESTS

This section is organized as follows. First, the proposed
control design is discretized for implementation. Second,
the benchmark results using the numerical simulation are
presented. Third, the hardware setup for the experimental test
is briefly explained. Finally, outdoor experimental test results
are presented.

A. Controller Discretization

1) Extended High-Gain Observers: To attenuate the noise
amplification, the second-order EHGO is utilized as follows:
X̂ (k + 1) = X̂ (k)+ T

[
FT

(
�̂e, ut

) + σ̂χ + HX
(X − X̂ )]

σ̂χ (k + 1) = σ̂χ (k)+ T
[
Hσχ

(X − X̂ )]
ϑ̂(k + 1) = ϑ̂(k)+ T

[
FR

(
�̂e, ut , ur

) + σ̂� + Hϑ

(
ϑ − ϑ̂

)]
σ̂�(k + 1) = σ̂�(k)+ T

[
Hσ�

(
ϑ − ϑ̂

)]
(34)

where X = [x2, y2, z2]T, ϑ = [φ2, θ2, ψ2]T, �̂e =
[φ1, φ2,s , θ1, θ2,s , ψ1, ψ2,s ]T,

HX = 1

ε4
diag[h11, h21, h31], Hϑ = 1

ε4
diag[h41, h51, h61]

Hσχ = 1

ε2
4

diag[h12, h22, h32], Hσ� = 1

ε2
4

diag[h42, h52, h62]

(35)

and T is a sampling period. The observer gains are selected
such that the polynomials s2 + hi1s + hi2 for i = 1, . . . , 6 are
Hurwitz.

TABLE I

RMSE VALUE MEASURED IN THE SIMULATION EXPERIMENT

2) Rotational and Translational Controllers: Using esti-
mated states and uncertainties in (34), the DI-ENMPC con-
trollers are discretized using the forward difference method.
In the discretization process, the saturation and the low-pass
filters are added to the control inputs to make the control
signals less noisy as follows:
Ct (k + 1) = Ct (k)+ αt � [

ut,s(k)− Ct (k)
]

Cr (k + 1) = Cr (k)+ αr � [
ur,s (k)− Cr (k)

]
ut,s = Mt � sat(ut 
 Mt ), ur,s = Mr � sat(ur 
 Mr )

(36)

where � is elementwise multiplication, 
 is elementwise divi-
sion, sat(·) is an saturation operator, Mt = [Mt,1,Mt,2,Mt,3]T

and Mr = [Mr,1,Mr,2,Mr,3]T are saturation levels for each
control input, and Ct and Cr are control signals of the
translational and the rotational dynamics, respectively. The
saturation levels are selected considering the actuator limits.

B. Benchmark Simulation Results

To show the outperformance of our control design (DI-
ENMPC), we applied the control design proposed in [14],
an ENMPC, and [10], a DOB-CSMC. The controllers are for-
mulated in discrete time with a sampling frequency of 250 Hz.
We employed a simple disturbance observer proposed in [31]
for the ENMPC and the DOB-CSMC. We have improved the
ENMPC using the methods suggested in [31] to deal with
the mismatched disturbances. We used the system parame-
ters obtained in the hardware experiment, and the gains are
selected using the methods in each paper—see the supple-
mentary material for the details. We utilized the sum of the
root-mean-squared error (RMSe) as a performance parame-
ter, i.e., RMSe = rms(ex) + rms(ey) + rms(ez) + rms(eψ),
and the results are presented in the Table I. As a result,
the DI-ENMPC has improved the RMSe value by 29.87%
compared to ENMPC and 19.46% compared to DOB-CSMC.
The trajectories and control inputs are plotted in the Supple-
mentary Material. In Fig. S5, the trajectories x1, y1, z1, and
ψ1 are shown. The trajectories of the DI-ENMPC showed
the best and the fastest convergence compared to ENMPC
and DOB-CSMC. In Fig. S7, the trajectories φ1 and θ1 are
plotted. Compared to DOB-CSMC, the DI-ENMPC showed
more aggressive behavior. In the Supplementary Material,
we presented the results for the rotational dynamics. When the
same references are given, we have shown that the DI-ENMPC
performs better than other benchmark controls. This can be
interpreted as the effects of the enlarged region of attraction.

C. Hardware Setup

We use an embedded board, Pixhawk 4 [32], and a
small-scale helicopter platform, Walkera V450D03. Walkera
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V450D03 is a 450-class helicopter model with a swash-
plate composed of three RC servo motors and the brushless
dc (BLDC) motor. The BLDC motor rotates both the main
rotor and tail rotor. Additional RC servo motor at the tail
rotor (rudder servo motor) controls its angle of attack. Pixhawk
provides the vehicle’s estimated attitude in Euler angles and
local positions in x, y, z coordinates. A 6-DOF (degrees of
freedom) gyroscope and a 3-DOF magnetometer are used to
estimate the helicopter’s attitude; a GPS and a barometric
pressure sensor are employed to estimate local positions with
the 250 Hz of the sampling frequency. The overall hardware
setup can be found in the Supplementary Material. The control
design is realized through the embedded coder toolbox for
pixhawk autopilot in MATLAB/Simulink environment [33]. The
translational and rotational controllers and the EHGO are
formulated in a single loop with 250 Hz of the sampling
frequency. In addition, the actuator modeling and parameter
estimation are conducted as presented in Section S2 of the
Supplementary Material.

D. Experimental Results

The control and observer gains used throughout the exper-
iments are selected as follows:

hi1 = 3, [h12, h22, h32] = [0.2, 0.1, 1]

h j1 = 4, [h42, h52, h62] = [0.2, 0.25, 0.25] (37)

for i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. The time scales are selected
as

εt = 1.5, εr = 0.275

ε2x,y = 0.25, ε2z = 0.1, ε3 = 0.1, ε4 = 0.08 (38)

which satisfies the condition of (26). The gains for the
low-pass filters are αt = [0.15, 0.15, 0.95]T and αr =
[0.02, 0.02, 0.02]T. The time-scales and low-pass filter gains
are chosen to adapt the control input dynamics in the
z-direction (Tm). Finally, the saturation limits for the control
inputs are selected as Mt = [18, 0.5, 0.5]T and Mr =
[5, π/6, π/6]T.

Remark 3: The practical procedure for selecting the gains
εt , εr , ε2, ε3, and ε4 is provided as follows.

1) First, select Mr to consider the hardware capacity. Then,
tune εr and ε3, until the state feedback controller stabi-
lizes the rotational dynamics and satisfies the perfor-
mance.

2) Second, select Mt to consider the hardware capacity.
Then, select εt such that (εt/εr ) � ε∗ and ε2 such that
(ε2/ε3) � ε∗, where 0 < ε∗ � 1. Tune the gains until
the helicopter performance is satisfied for the position
holding and trajectory tracking.

3) Third, record the amplitudes of the states χ and � under
the state feedback to determine the saturation levels of
the EHGO, so that the saturation is not activated during
the flight.

4) Finally, select ε4 such that (ε3/ε4) � ε∗. Validate the
estimated performance.

Two different experimental tests (position holding and track-
ing the reference trajectories) were conducted as follows.

Fig. 3. Solid lines represent trajectories x1, y1, z1, and ψ1. Dashed lines
represent the references, while solid lines represent the trajectories (units: m
for x, y, and z and rad for ψ1).

Fig. 4. Circular trajectory is shown in frame by frame images of the
experiment. The trajectory (solid-line) and its reference (dotted-line) of one
cycle during the experiment.

First, the position holding experimental test is to locate the
helicopter at the position as xr = 0 (m), yr = 0 (m), zr =
−3.5 (m), and ψr = 0 (rad). Second, for experimental tests
to track a reference, the reference is begin by xr = 2 cos 0.4t
(m), yr = 2 sin 0.4t (m), zr = −4.0 (m), and ψr = 0 (rad).
The derivatives of the references are obtained by numerical
differentiation of xr and yr . The zr reference are filtered
with a second-order low-pass filter. Fig. 3 shows that the
experiments begin with position holding starting at 30 s and
ends at 42 s, tracking reference experimental test starts at 42 s
and ends at 100 s, and position holding for the final stage starts
at 100 s.

The time lapse to track the circular trajectory during the
experiment is plotted in Fig. 4. In Fig. S14, the system states
φ1, θ1, and ψ1 and references φd , θd , and ψr are shown. The
reference signals φd and θd are from the translational DI. φ1,
θ1, and ψ1 track the reference trajectories. The estimates X̂
and ϑ̂ from the EHGO and measurements X and ϑ from
sensors are plotted in Figs. S13 and S15, respectively. The
EHGO estimates the signals well, and amplified plots are
shown on the right-hand side at each subplot. The estimated
uncertainties for the translational and the rotational dynamics
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are shown in Figs. S16 and S17, respectively. The actual
helicopter control inputs Tm , Tt , a1s , and b1s in the experiment
are shown in Fig. S18.

In conclusion, in contrast to the vision localization-based
indoor experiments [14], our successful outdoor experiment
clearly shows that our control design can be implemented with
the off-the-shelf Pixhawk device.

V. CONCLUSION

In this brief, the novel control design for a helicopter
under external disturbances and model uncertainties using
nonaffine control inputs was proposed. Based on the time-scale
separation, the ENMPC was utilized for optimal trajectory
tracking and to provide the framework for the DIs. The DI
dealt with nonaffine control inputs and the EHGO estimated
uncertainties. The stability of the closed-loop system in the
continuous time was analyzed. The outperformance of our
control design was demonstrated by the discrete-time simu-
lation by comparing the benchmark controllers. The proposed
control design was validated through the outdoor experimental
tests in the presence of external disturbances and model
uncertainties. The proposed control design was implemented
to a small-scale helicopter with Pixhawk 4. In the experimental
tests, the effectiveness of the proposed control design was
shown.

APPENDIX

VIDEO OF THE EXPERIMENT IN THE OUTDOOR

The video of the experiment done in the outdoor can be
found in the following link: https://youtu.be/aLQ-Ar9PMv4.
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